精英家教网 > 高中数学 > 题目详情
8.已知直线l1的方程为3x+4y-7=0,直线l2的方程为6x+8y+1=0,则直线l1与l2的距离为$\frac{3}{2}$.

分析 首先使直线l1方程中x,y的系数与直线l2方程的系数统一,再根据两条平行线间的距离公式可得答案.

解答 解:由题意可得:直线l1的方程为6x+8y-14=0,
因为直线l2的方程为6x+8y+1=0,
所以根据两条平行线间的距离公式可得:直线l1与l2的距离为$\frac{|-14-1|}{\sqrt{36+64}}$=$\frac{3}{2}$.
故答案为$\frac{3}{2}$.

点评 本题主要考查两条平行线之间的距离公式,在利用公式解题时一定要使两条直线方程中x,y的系数相同,此题也可以在其中一条直线上取一点,根据点到直线的距离公式求此点到另一条直线的距离,即可得到两条平行线之间的距离.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.设命题p:?x∈R,x2-2(m-3)x+1=0,命题q:?x∈R,x2-2(m+5)x+3m+19≠0
(1)若p∨q为真命题,且p∧q为假命题,求实数m的取值范围
(2)若p∧q为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设复数z满足(z+i)i=-3+4i(i为虚数单位),则z的模为$2\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.方程2x=x2有3个根.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知两个不同的平面α、β和两条不重合的直线,m、n,有下列四个命题
①若m∥n,m⊥α,则n⊥α②若m⊥α,m⊥β,则α∥β
③若m⊥α,n∥α,则m⊥n④若m∥α,m∥β,α∩β=n,则m∥n
其中正确命题的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知f(n)=1•n+2•(n-1)+3•(n-2)+…+n•1(n∈N*),那么f(n+1)-f(n)=$\frac{(n+1)(n+2)}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.过双曲线$\frac{x^2}{4}$-$\frac{y^2}{2}$=1的右焦点F作直线l交双曲线于A?B两点,若|AB|=5,则这样的直线l有(  )
A.1条B.2条C.3条D.4条

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图所示,在多面体EF-ABC中,△ABC是边长为2的等边三角形,O为BC的中点,EF∥AO,EA=EC=EF=$\sqrt{3}$.
(1)若平面ABC∩平面BEF=l,证明:EF∥l;
(2)求证:AC⊥BE;
(3)若BE=$\sqrt{5}$,EO=$\sqrt{3}$,求点B到平面AFO的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=$\frac{2x+1}{x+1}$的对称中心为(-1,2).

查看答案和解析>>

同步练习册答案