¡¾´ð°¸¡¿
·ÖÎö£º£¨1£©¸ù¾ÝÇиîÏ߶¨Àí£¬µÃµ½AMÊÇMBºÍMCµÄ±ÈÀýÖÐÏ½áºÏAM=MP£¬¡ÏBMP=¡ÏPMC£¬µÃ¡÷BMP¡×¡÷PMC£¬´Ó¶øµÃµ½¶ÔÓ¦½ÇÏàµÈ£¬ÃüÌâµÃÖ¤£»
£¨2£©Ëĸö¶¥µãA£¨0£¬1£©£¬B£¨2£¬1£©£¬C£¨2£¬3£©£¬D£¨0£¬2£©£¬¾¾ØÕó
±íʾµÄ±ä»»×÷Óúó£¬ËıßÐÎABCD±äΪËıßÐÎA
1B
1C
1D
1ÈÔΪÌÝÐΣ¬ÇÒÉÏ¡¢Ïµ׼°¸ß¶¼²»±ä£¬¹ÊÃæ»ýÏàµÈ£»
£¨3£©°Ñ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬¿ÉµÃÁ½ÇúÏß·Ö±ð±íʾһ¸öÔ²£¬Çó³öÁ½Ô²µÄÔ²Ðľ࣬¿ÉµÃÁ½Ô²Ïཻ£¬¹ÊÏ߶ÎAB³¤µÄ×î´óÖµµÈÓÚÔ²Ðľà¼ÓÉÏÁ½¸öÔ²µÄ°ë¾¶£»
£¨4£©ÌâÖÐÁ¬½ÓPÓëÈý½ÇÐεÄÈý¸ö¶¥µã£¬·Ö³ÉµÄÈý¸öСÈý½ÇÐÎÃæ»ýµÄºÍµÈÓÚ´óÈý½ÇÐΣ¬¿ÉµÃax+by+cz=2S=
£¬ÔÙÀûÓÿÂÎ÷²»µÈʽ¼´¿ÉµÃÖ¤£®
½â´ð£º£¨1£©Ö¤Ã÷£º¡ßAMÇÐÔ²ÓÚµãA£¬¡àAM
2=MB•MC
ÓÖ¡ßMΪPAÖе㣬AM=MP£¬¡àMP
2=MB•MC£¬¡à
¡ß¡ÏBMP=¡ÏPMC£¬¡à¡÷BMP¡×¡÷PMC£¬¡à¡ÏMCP=¡ÏMPB£®
£¨2£©Ëĸö¶¥µãA£¨0£¬1£©£¬B£¨2£¬1£©£¬C£¨2£¬3£©£¬D£¨0£¬2£©£¬¾¾ØÕó
±íʾµÄ±ä»»×÷Óúó£¬ËıßÐÎABCD±äΪËıßÐÎA
1B
1C
1D
1¶¥µã×ø±êΪA
1£¨0£¬1£©£¬B
1£¨2£¬2k+1£©£¬C
1£¨2£¬2k+3£©£¬D
1£¨0£¬2£©£¬ËıßÐÎA
1B
1C
1D
1ÈÔΪÌÝÐΣ¬ÇÒÉÏ¡¢Ïµ׼°¸ß¶¼²»±ä£¬¹ÊÃæ»ýÏàµÈ£»
£¨3£©ÇúÏߦÑ=12sin¦È»¯ÎªÖ±½Ç×ø±ê·½³ÌΪ x
2+£¨y-6£©
2=36£¬±íʾÒÔ£¨0£¬6£©ÎªÔ²ÐÄ£¬ÒÔ6Ϊ°ë¾¶µÄÔ²£®
ÇúÏß
»¯ÎªÖ±½Ç×ø±ê·½³ÌΪ x
2+y
2=6
x+6y£¬¼´ £¨x-3
£©
2+£¨y-3£©
2=36£¬
±íʾÒÔ£¨3
£¬3 £©ÎªÔ²ÐÄ£¬ÒÔ6Ϊ°ë¾¶µÄÔ²£®
Á½Ô²µÄÔ²ÐľàµÄƽ·½Îª £¨0-3
£©
2+£¨6-3£©
2 =36£¬¹ÊÁ½Ô²Ïཻ£¬Ï߶ÎAB³¤µÄ×î´óֵΪ6+r+r¡ä=18£®
£¨4£©Á¬½ÓPÓëÈý½ÇÐεÄÈý¸ö¶¥µã£¬·Ö³ÉµÄÈý¸öСÈý½ÇÐÎÃæ»ýµÄºÍµÈÓÚ´óÈý½ÇÐΣ¬¼´
£¨ax+by+cz£©=S£¬¡àax+by+cz=2S=
¡à
=
×
+
×
+
×
¡Ü
×[
+
+
]
=
×£¨
£©=
×
=
¡Ü
¼´
µãÆÀ£º±¾Ì⿼²éÁËÔ²µ±ÖеıÈÀýÏ߶Σ¬ÒÔ¼°Èý½ÇÐÎÏàËƵÄÓйØ֪ʶµã£¬¿¼²é°Ñ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³ÌµÄ·½·¨£¬ÒÔ¼°Á½Ô²µÄλÖùØϵ£¬Çó³öÁ½Ô²µÄÔ²Ðľ࣬¿¼²é¾ØÕóÓë±ä»»£¬¿¼²é²»µÈʽµÄÖ¤Ã÷£¬×ÛºÏÐÔÇ¿