£¨1£©×ÔÔ²OÍâÒ»µãPÒýÇÐÏßÓëÔ²ÇÐÓÚµãA£¬MΪPAÖе㣬¹ýMÒý¸îÏß½»Ô²ÓÚB£¬CÁ½µã£®ÇóÖ¤£º¡ÏMCP=¡ÏMPB£®
£¨2£©ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªËıßÐÎABCDµÄËĸö¶¥µãA£¨0£¬1£©£¬B£¨2£¬1£©£¬C£¨2£¬3£©£¬D£¨0£¬2£©£¬¾­¾ØÕó±íʾµÄ±ä»»×÷Óúó£¬ËıßÐÎABCD±äΪËıßÐÎA1B1C1D1£¬ÎÊ£ºËıßÐÎABCDÓëËıßÐÎA1B1C1D1µÄÃæ»ýÊÇ·ñÏàµÈ£¿ÊÔÖ¤Ã÷ÄãµÄ½áÂÛ£®
£¨3£©ÒÑÖªAÊÇÇúÏߦÑ=12sin¦ÈÉϵĶ¯µã£¬BÊÇÇúÏßÉϵĶ¯µã£¬ÊÔÇóABµÄ×î´óÖµ£®
£¨4£©ÉèpÊÇ¡÷ABCÄÚµÄÒ»µã£¬x£¬y£¬zÊÇpµ½Èý±ßa£¬b£¬cµÄ¾àÀ룬RÊÇ¡÷ABCÍâ½ÓÔ²µÄ°ë¾¶£¬Ö¤Ã÷£®

¡¾´ð°¸¡¿·ÖÎö£º£¨1£©¸ù¾ÝÇиîÏ߶¨Àí£¬µÃµ½AMÊÇMBºÍMCµÄ±ÈÀýÖÐÏ½áºÏAM=MP£¬¡ÏBMP=¡ÏPMC£¬µÃ¡÷BMP¡×¡÷PMC£¬´Ó¶øµÃµ½¶ÔÓ¦½ÇÏàµÈ£¬ÃüÌâµÃÖ¤£»
£¨2£©Ëĸö¶¥µãA£¨0£¬1£©£¬B£¨2£¬1£©£¬C£¨2£¬3£©£¬D£¨0£¬2£©£¬¾­¾ØÕó±íʾµÄ±ä»»×÷Óúó£¬ËıßÐÎABCD±äΪËıßÐÎA1B1C1D1ÈÔΪÌÝÐΣ¬ÇÒÉÏ¡¢Ïµ׼°¸ß¶¼²»±ä£¬¹ÊÃæ»ýÏàµÈ£»
£¨3£©°Ñ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬¿ÉµÃÁ½ÇúÏß·Ö±ð±íʾһ¸öÔ²£¬Çó³öÁ½Ô²µÄÔ²Ðľ࣬¿ÉµÃÁ½Ô²Ïཻ£¬¹ÊÏ߶ÎAB³¤µÄ×î´óÖµµÈÓÚÔ²Ðľà¼ÓÉÏÁ½¸öÔ²µÄ°ë¾¶£»
£¨4£©ÌâÖÐÁ¬½ÓPÓëÈý½ÇÐεÄÈý¸ö¶¥µã£¬·Ö³ÉµÄÈý¸öСÈý½ÇÐÎÃæ»ýµÄºÍµÈÓÚ´óÈý½ÇÐΣ¬¿ÉµÃax+by+cz=2S=£¬ÔÙÀûÓÿÂÎ÷²»µÈʽ¼´¿ÉµÃÖ¤£®
½â´ð£º£¨1£©Ö¤Ã÷£º¡ßAMÇÐÔ²ÓÚµãA£¬¡àAM2=MB•MC
ÓÖ¡ßMΪPAÖе㣬AM=MP£¬¡àMP2=MB•MC£¬¡à
¡ß¡ÏBMP=¡ÏPMC£¬¡à¡÷BMP¡×¡÷PMC£¬¡à¡ÏMCP=¡ÏMPB£®
£¨2£©Ëĸö¶¥µãA£¨0£¬1£©£¬B£¨2£¬1£©£¬C£¨2£¬3£©£¬D£¨0£¬2£©£¬¾­¾ØÕó±íʾµÄ±ä»»×÷Óúó£¬ËıßÐÎABCD±äΪËıßÐÎA1B1C1D1¶¥µã×ø±êΪA1£¨0£¬1£©£¬B1£¨2£¬2k+1£©£¬C1£¨2£¬2k+3£©£¬D1£¨0£¬2£©£¬ËıßÐÎA1B1C1D1ÈÔΪÌÝÐΣ¬ÇÒÉÏ¡¢Ïµ׼°¸ß¶¼²»±ä£¬¹ÊÃæ»ýÏàµÈ£»
£¨3£©ÇúÏߦÑ=12sin¦È»¯ÎªÖ±½Ç×ø±ê·½³ÌΪ x2+£¨y-6£©2=36£¬±íʾÒÔ£¨0£¬6£©ÎªÔ²ÐÄ£¬ÒÔ6Ϊ°ë¾¶µÄÔ²£®
ÇúÏß»¯ÎªÖ±½Ç×ø±ê·½³ÌΪ x2+y2=6x+6y£¬¼´ £¨x-3£©2+£¨y-3£©2=36£¬
±íʾÒÔ£¨3£¬3 £©ÎªÔ²ÐÄ£¬ÒÔ6Ϊ°ë¾¶µÄÔ²£®
Á½Ô²µÄÔ²ÐľàµÄƽ·½Îª £¨0-3 £©2+£¨6-3£©2 =36£¬¹ÊÁ½Ô²Ïཻ£¬Ï߶ÎAB³¤µÄ×î´óֵΪ6+r+r¡ä=18£®
£¨4£©Á¬½ÓPÓëÈý½ÇÐεÄÈý¸ö¶¥µã£¬·Ö³ÉµÄÈý¸öСÈý½ÇÐÎÃæ»ýµÄºÍµÈÓÚ´óÈý½ÇÐΣ¬¼´£¨ax+by+cz£©=S£¬¡àax+by+cz=2S=
¡à=×+×+×
¡Ü×[++]
=×£¨£©=×=¡Ü
¼´
µãÆÀ£º±¾Ì⿼²éÁËÔ²µ±ÖеıÈÀýÏ߶Σ¬ÒÔ¼°Èý½ÇÐÎÏàËƵÄÓйØ֪ʶµã£¬¿¼²é°Ñ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³ÌµÄ·½·¨£¬ÒÔ¼°Á½Ô²µÄλÖùØϵ£¬Çó³öÁ½Ô²µÄÔ²Ðľ࣬¿¼²é¾ØÕóÓë±ä»»£¬¿¼²é²»µÈʽµÄÖ¤Ã÷£¬×ÛºÏÐÔÇ¿
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ñ¡ÐÞ4-1£º¼¸ºÎÖ¤Ã÷Ñ¡½²
×ÔÔ²OÍâÒ»µãPÒýÔ²µÄÒ»ÌõÇÐÏßPA£¬ÇеãΪA£¬MΪPAµÄÖе㣬¹ýµãMÒýÔ²OµÄ¸îÏß½»¸ÃÔ²ÓÚB¡¢CÁ½µã£¬ÇÒ¡ÏBMP=100¡ã£¬¡ÏBPC=40¡ã£¬Çó¡ÏMPBµÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨1£©×ÔÔ²OÍâÒ»µãPÒýÇÐÏßÓëÔ²ÇÐÓÚµãA£¬MΪPAÖе㣬¹ýMÒý¸îÏß½»Ô²ÓÚB£¬CÁ½µã£®ÇóÖ¤£º¡ÏMCP=¡ÏMPB£®
£¨2£©ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªËıßÐÎABCDµÄËĸö¶¥µãA£¨0£¬1£©£¬B£¨2£¬1£©£¬C£¨2£¬3£©£¬D£¨0£¬2£©£¬¾­¾ØÕóM=
10
k1
±íʾµÄ±ä»»×÷Óúó£¬ËıßÐÎABCD±äΪËıßÐÎA1B1C1D1£¬ÎÊ£ºËıßÐÎABCDÓëËıßÐÎA1B1C1D1µÄÃæ»ýÊÇ·ñÏàµÈ£¿ÊÔÖ¤Ã÷ÄãµÄ½áÂÛ£®
£¨3£©ÒÑÖªAÊÇÇúÏߦÑ=12sin¦ÈÉϵĶ¯µã£¬BÊÇÇúÏߦÑ=12cos(¦È-
¦Ð
6
)
ÉϵĶ¯µã£¬ÊÔÇóABµÄ×î´óÖµ£®
£¨4£©ÉèpÊÇ¡÷ABCÄÚµÄÒ»µã£¬x£¬y£¬zÊÇpµ½Èý±ßa£¬b£¬cµÄ¾àÀ룬RÊÇ¡÷ABCÍâ½ÓÔ²µÄ°ë¾¶£¬Ö¤Ã÷
x
+
y
+
z
¡Ü
1
2R
a2+b2+c2
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º½­ËÕͬ²½Ìâ ÌâÐÍ£º½â´ðÌâ

(¸½¼ÓÌâ)
£¨1£©×ÔÔ²OÍâÒ»µãPÒýÇÐÏßÓëÔ²ÇÐÓÚµãA£¬MΪPAÖе㣬¹ýMÒý¸îÏß½»Ô²ÓÚB£¬CÁ½µã£®
ÇóÖ¤£º¡ÏMCP=¡ÏMPB£®
£¨2£©ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªËıßÐÎABCDµÄËĸö¶¥µãA£¨0£¬1£©£¬B£¨2£¬1£©£¬C£¨2£¬3£©£¬D£¨0£¬2£©£¬¾­¾ØÕó±íʾµÄ±ä»»×÷Óúó£¬ËıßÐÎABCD±äΪËıßÐÎA1B1C1D1£¬ÎÊ£ºËıßÐÎABCDÓëËıßÐÎA1B1C1D1µÄÃæ»ýÊÇ·ñÏàµÈ£¿ÊÔÖ¤Ã÷ÄãµÄ½áÂÛ£®
£¨3£©ÒÑÖªAÊÇÇúÏߦÑ=12sin¦ÈÉϵĶ¯µã£¬BÊÇÇúÏßÉϵĶ¯µã£¬ÊÔÇóABµÄ×î´óÖµ£®
£¨4£©ÉèpÊÇ¡÷ABCÄÚµÄÒ»µã£¬x£¬y£¬zÊÇpµ½Èý±ßa£¬b£¬cµÄ¾àÀ룬RÊÇ¡÷ABCÍâ½ÓÔ²µÄ°ë¾¶£¬Ö¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

£¨1£©×ÔÔ²OÍâÒ»µãPÒýÇÐÏßÓëÔ²ÇÐÓÚµãA£¬MΪPAÖе㣬¹ýMÒý¸îÏß½»Ô²ÓÚB£¬CÁ½µã£®ÇóÖ¤£º¡ÏMCP=¡ÏMPB£®
£¨2£©ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªËıßÐÎABCDµÄËĸö¶¥µãA£¨0£¬1£©£¬B£¨2£¬1£©£¬C£¨2£¬3£©£¬D£¨0£¬2£©£¬¾­¾ØÕóM=
10
k1
±íʾµÄ±ä»»×÷Óúó£¬ËıßÐÎABCD±äΪËıßÐÎA1B1C1D1£¬ÎÊ£ºËıßÐÎABCDÓëËıßÐÎA1B1C1D1µÄÃæ»ýÊÇ·ñÏàµÈ£¿ÊÔÖ¤Ã÷ÄãµÄ½áÂÛ£®
£¨3£©ÒÑÖªAÊÇÇúÏߦÑ=12sin¦ÈÉϵĶ¯µã£¬BÊÇÇúÏߦÑ=12cos(¦È-
¦Ð
6
)
ÉϵĶ¯µã£¬ÊÔÇóABµÄ×î´óÖµ£®
£¨4£©ÉèpÊÇ¡÷ABCÄÚµÄÒ»µã£¬x£¬y£¬zÊÇpµ½Èý±ßa£¬b£¬cµÄ¾àÀ룬RÊÇ¡÷ABCÍâ½ÓÔ²µÄ°ë¾¶£¬Ö¤Ã÷
x
+
y
+
z
¡Ü
1
2R
a2+b2+c2
£®
¾«Ó¢¼Ò½ÌÍø

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸