精英家教网 > 高中数学 > 题目详情
16.(1)已知sinα=$\frac{4}{5}$,且α是第二象限的角,求tanα.
(2)已知向量$\overrightarrow{a}$的起点为A,终点B的坐标为(1,0)向量$\overrightarrow{b}$=(-1,2),$\overrightarrow{c}$=(2,1),且$\overrightarrow{a}$=2$\overrightarrow{b}$-$\overrightarrow{c}$,求点A的坐标.

分析 (1)根据同角的基本关系式进行求解即可求tanα.
(2)根据向量的坐标公式进行运算求解即可.

解答 解:(1)∵sinα=$\frac{4}{5}$,且α是第二象限的角,
∴cosα=-$\sqrt{1-sin^2α}$=-$\frac{3}{5}$
则tanα=$\frac{sinα}{cosα}=\frac{\frac{4}{5}}{-\frac{3}{5}}=-\frac{4}{3}$.
(2)设A(x,y),则$\overrightarrow{a}$=(1-x,-y),
∵向量$\overrightarrow{b}$=(-1,2),$\overrightarrow{c}$=(2,1),且$\overrightarrow{a}$=2$\overrightarrow{b}$-$\overrightarrow{c}$,
∴(1-x,-y)=2(-1,2)-(2,1)=(-4,3),
则$\left\{\begin{array}{l}{1-x=-4}\\{-y=3}\end{array}\right.$,得$\left\{\begin{array}{l}{x=5}\\{y=-3}\end{array}\right.$,即A(5,-3).

点评 本题主要考查同角的基本关系式的应用以及向量坐标的基本运算,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=-cos2x+$\sqrt{3}$sinxcosx+1.
(1)求函数f(x)的单调递增区间;
(2)若f(θ)=$\frac{5}{6}$,$θ∈(\frac{π}{3},\frac{2π}{3}),求sin2θ$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知在△ABC中,∠BAC=120°,AB=2,AC=1,AD为∠BAC的平分线,则$\overrightarrow{AD}•\overrightarrow{AC}$=(  )
A.$\frac{7}{3}$B.$\frac{1}{3}$C.-$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.己知直线L经过点P(0,-1),且与直线x-2y+1=0平行,求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知由不等式组$\left\{\begin{array}{l}{x≤0}\\{y≥0}\\{y-kx≤2}\\{y-x-4≤0}\end{array}\right.$确定的平面区域M的面积为7,定点A的坐标为(1,-2),若B∈M,O为坐标原点,则$\overrightarrow{OA}$•$\overrightarrow{OB}$的最小值是(  )
A.-4B.-6C.-7D.-8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x2-ax(a∈R)
(1)若不等式f(x)>a-3的解集为R,求实数a的取值范围;
(2)设x>y>0,且xy=2,若不等式f(x)+f(y)+2ay≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知$f(x)=\left\{\begin{array}{l}1+x,x∈R\\(1+i)x,x∉R\end{array}\right.$,则f(f(1-i))=(  )
A.2-iB.1C.3D.3+i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知向量$\overrightarrow{m}$=(a,1),$\overrightarrow{n}$=(1+sinx,acosx+b),函数f(x)=$\overrightarrow{m}•\overrightarrow{n}$.
(1)当a=1时,求f(x)的单调递增区间;
(2)当a<0时,x∈[0,π]时,f(x)的值域是[3,4],求a,b的值;
(3)当a=-b=$\sqrt{2}$时,函数y=f(x)的图象与直线y=1有交点,求相邻两个交点的最短距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图所示,圆C的圆心C在x轴的正半轴上,且过直线l:y=x-1与x轴的交点A,若直线l被圆C截得的弦AB的长为2$\sqrt{2}$,则圆C的标准方程为(x-3)2+y2=4.

查看答案和解析>>

同步练习册答案