精英家教网 > 高中数学 > 题目详情
7.数列{an}的前n项和Sn=n(n+1),则它的第n项an是(  )
A.nB.n(n+1)C.2nD.2n

分析 利用递推公式即可得出.

解答 解:∵Sn=n(n+1),
∴当n=1时,a1=S1=2;
当n≥2时,an=Sn-Sn-1=n(n+1)-n(n-1)=2n.
当n=1时上式也成立,
∴an=2.
故选:C.

点评 本题考查了递推关系的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.求下列函数的定义域:
(1)y=$\sqrt{sinxtanx}$;
(2)y=1g(sin2x)+$\sqrt{9-{x}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如果实数x,y满足条件$\left\{\begin{array}{l}{x-y+1≥0}\\{2x+y-2≥0}\\{x-1≤0}\end{array}\right.$,则z=$\frac{y+1}{x}$的最大值为7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知直线y=x与圆x2+y2=1交于A,B两点,点A在x轴的上方,O是坐标原点.
(1)求以射线OA为终边的角α的正弦值和余弦值;
(2)求以射线OB为终边的角β的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{3x+4y≥8}\end{array}\right.$,则z=x2+y2-2x+1的最小值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.讨论方程$\sqrt{|1-x|}$=kx的实数根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知sinα=2cosα,求下列各式的值.
(1)sin2α-cos2α:
(2)sin2α+sinαcosα+3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.数列{an}:3an+2-5an+1+2an=0(n≥0,n∈N*),a1=a,a2=b,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图所示,在正方体ABCD-A1B1C1D1中,B1D与平面ACD1交于点O,BD与平面ACD1交于点M,求证:M,O,D1三点共线.

查看答案和解析>>

同步练习册答案