精英家教网 > 高中数学 > 题目详情
在等比数列{an}中,a2-a1=2,且2a2为3a1和a3的等差中项.
(1)求数列的{an}的通项公式;
(2)设Sn为数列an的前n项和,求Sn
考点:数列的求和,等比数列的性质
专题:等差数列与等比数列
分析:(1)利用等比数列与等差数列的通项公式即可得出.
(2)利用等比数列的前n项和公式即可得出.
解答: 解:(1)设等比数列{an}的公比为q,
∵a2-a1=2,且2a2为3a1和a3的等差中项.
∴a1q-a1=2,4a2=3a1+a3,即4a1q=3a1+a1q2,化为4q=3+q2
解得a1=1,q=3.
∴an=3n-1
(2)Sn=
3n-1
3-1
=
1
2
(3n-1)
点评:本题考查了等比数列与等差数列的图象四个及其前n项和公式即,考查了计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若圆x2+y2-2ax+a2=2和圆x2+y2-2by+b2=1相外离,则a,b满足的条件是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线C:
x2
3
-y2
=1的离心率是
 
;若抛物线y2=2mx与双曲线C有相同的焦点,则m=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知当x∈[1,2)时,f(x)=|x-
5
3
|;当x∈[1,+∞)时,f(2x)=2f(x),则方程f(x)=log8x(1≤x≤12)的根的个数为(  )
A、4B、5C、6D、7

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,a3+a4+a5=42,a6=30.
(1)求数列{an}的通项公式;
(2)数列{bn}满足bn=
2n-1,n为奇数
1
2
an-1,n为偶数
,Tn为数列{bn}的前n项和,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

动圆P过定点F(1,0)且与直线x=-1相切,圆心P的轨迹为曲线C.
(1)求曲线C的方程;
(2)过F作曲线C的两条互相垂直的弦AB,CD,设AB,CD的中点分别为M、N,求证:直线MN必过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
满足|
a
|=1,|
b
|=4且
a
b
=-2,则
a
b
的夹角为(  )
A、150°B、120°
C、60°D、30°

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示的纸篓,观察其几何结构,可以看出是由许多条直线围成的旋转体,该几何体的正视图为(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在平行六面体ABCD-A1B1C1D1中,若
A1B1
=
a
A1D1
=
b
AA1
=
c
,则下列向量中与
A1C
相等的向量是(  )
A、-
a
+
b
+
c
B、
a
-
b
+
c
C、
a
+
b
+
c
D、
a
+
b
-
c

查看答案和解析>>

同步练习册答案