精英家教网 > 高中数学 > 题目详情

设定义在区间[-1,1]上的偶函数f(x)与函数g(x)的图象关于直线x=1对称,且当x∈[2,3]时,g(x)=数学公式 (0<a<36),求f(x)的最大值与最小值.

解:∵f(x)为定义在区间[-1,1]上的偶函数,
∴f(x) 在区间[-1,1]上的最大值与最小值,
实际上分别等于f(x) 在区间[-1,0]上最大值与最小值.
∵f(x)与函数g(x)的图象关于直线x=1对称,
∴f(x) 在区间[-1,0]上最大值与最小值,也就是g(x)在区间[2,3]上的最大值与最小值.(4分)

∵0<a<36,
∴g′(x)=0的二根为,其中
∴列表如下:
x
g′(x)>0=0<0
g(x)
(13分)
分析:根据函数是一个偶函数,f(x) 在区间[-1,1]上的最大值与最小值,实际上分别等于f(x) 在区间[-1,0]上最大值与最小值,f(x)与函数g(x)的图象关于直线x=1对称,f(x) 在区间[-1,0]上最大值与最小值,也就是g(x)在区间[2,3]上的最大值与最小值,利用导数求g(x)在区间[2,3]上的最大值与最小值,得到结果.
点评:本题考查导数在求最值中的应用和函数的奇偶性及对称性,本题解题的关键是通过分析函数的性质,看出题目的实质,再利用导数求最值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设定义在区间[-1,1]上的偶函数f(x)与函数g(x)的图象关于直线x=1对称,且当x∈[2,3]时,g(x)=
a3
(x-2)-4(x-2)3
 (0<a<36),求f(x)的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•杭州二模)设定义在区间(-b,b)上的函数f(x)=lg
1+ax
1-2x
是奇函数(a,b∈R,且a≠-2),则ab的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设定义在区间[-1,1]上的偶函数f(x)与函数g(x)的图象关于直线x=1对称,且当x∈[2,3]时,g(x)=
a
3
(x-2)-4(x-2)3
 (0<a<36),求f(x)的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源:2004-2005学年北京市人大附中高三(上)月考数学试卷(文科)(解析版) 题型:解答题

设定义在区间[-1,1]上的偶函数f(x)与函数g(x)的图象关于直线x=1对称,且当x∈[2,3]时,g(x)= (0<a<36),求f(x)的最大值与最小值.

查看答案和解析>>

同步练习册答案