精英家教网 > 高中数学 > 题目详情
8.正四棱锥O-ABCD的体积为$\frac{{3\sqrt{2}}}{2}$,底面边长为$\sqrt{3}$,求正四棱锥O-ABCD的内切球的表面积$(4-\sqrt{7})π$.

分析 利用锥体的体积公式即可求得正四棱锥O-ABCD的高,可得斜高,利用等体积法求出正四棱锥O-ABCD的内切球的半径,根据球的表面积公式计算即得结论.

解答 解:正四棱锥O-ABCD的体积V=$\frac{1}{3}$Sh=$\frac{1}{3}×\sqrt{3}×\sqrt{3}$×h=$\frac{3\sqrt{2}}{2}$,
∴h=$\frac{3\sqrt{2}}{2}$,
∴斜高为$\sqrt{(\frac{3\sqrt{2}}{2})^{2}+(\frac{\sqrt{3}}{2})^{2}}$=$\frac{\sqrt{21}}{2}$,
设正四棱锥O-ABCD的内切球的半径为r,则
$\frac{1}{3}$×($\sqrt{3}×\sqrt{3}$+4×$\frac{1}{2}×\sqrt{3}×\frac{\sqrt{21}}{2}$)r=$\frac{{3\sqrt{2}}}{2}$,
∴r=$\frac{\sqrt{2}(\sqrt{7}-1)}{4}$
∴正四棱锥O-ABCD的内切球的表面积为4πr2=$(4-\sqrt{7})π$.
故答案为:$(4-\sqrt{7})π$.

点评 本题考查锥体的体积、球的表面积计算,考查学生的运算能力,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知sinα=$\frac{4}{5}$,α∈($\frac{π}{2}$,π).
(Ⅰ)求sin(α-$\frac{π}{6}$)的值;
(Ⅱ)求tan2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若sinα<0,cosα<0,则α所在的象限是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知向量$\overrightarrow{a}$=(2sinx,sinx-cosx),$\overrightarrow{b}$=(cosx,$\sqrt{3}$(cosx+sinx)),f(x)=$\overrightarrow{a}•\overrightarrow{b}$+1.
(1)当x$∈(\frac{π}{4},\frac{π}{2})$时,求f(x)的值域,并求其对称中心;
(2)若将f(x)向左平移$\frac{π}{4}$个单位得到函数g(x),再将g(x)关于直线y=2对称,求所得函数的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.对于平面α和两条直线m,n,下列命题中真命题是(  )
A.若m⊥α,m⊥n,则n∥αB.若m∥α,n∥α,则m∥n
C.若m,n与α所成的角相等,则m∥nD.若m?α,m∥n,且n在平面α外,则n∥α

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数y=tanωx在$({-\frac{π}{4},\frac{π}{4}})$内是增函数,则(  )
A.0<ω≤2B.-2≤ω<0C.ω≥2D.ω≤-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数y=f(x+1)是定义域为R的偶函数,且f(x)在[1,+∞)上单调递减,则不等式f(2x-1)>f(x+2)的解集为($\frac{1}{3}$,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知圆$A:{(x+\sqrt{2})^2}+{y^2}=12$,圆A内一定点$B(\sqrt{2},0)$,圆P过点B且与圆A内切.
(Ⅰ)求圆心P的轨迹方程;
(Ⅱ)若直线y=kx+2与点P的轨迹交于C,D两点.问是否存在常数k,使得以CD为直径的圆过坐标原点O,若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.一个正方体的棱长为2cm,它的顶点都在一个球面上,则球的半径是(  )cm.
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

同步练习册答案