精英家教网 > 高中数学 > 题目详情
2.方程ln(2x+1)+ex-1=0的根的集合为{0}.

分析 令函数f(x)=ln(2x+1)+ex-1=0,可知:函数f(x)在$(-\frac{1}{2},+∞)$上单调递增,因此函数f(x)至多有一个零点.即可得出.

解答 解:令函数f(x)=ln(2x+1)+ex-1=0,可知:函数f(x)在$(-\frac{1}{2},+∞)$上单调递增,
∴函数f(x)至多有一个零点.
而f(0)=0,
∴方程ln(2x+1)+ex-1=0的根的集合为{0}.
故答案为:{0}.

点评 本题考查了函数的单调性及其函数零点、对数函数与指数函数的运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.在一个俱乐部里,有老实人和骗子两类成员,老实人永远说真话,骗子永远说假话,次我们和俱乐部的四个成员谈天,我们便问他们:“你们是什么人,是老实人?还是骗子?”这四个人的回答如下:
第一个人说;“我们四个人全都是骗子;”
第二个人说;“我们当中只有-个人是骗子;”
第三个人说:“我们四个人中有两个人是骗子;”
第四个人说:“我是老实人;”
请判断一下,第四个人是老实人吗?是(请用“是”或“否”作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知圆心为C的圆:(x-a)2+(y-b)2=8(a,b为正整数)过点A(0,1),且与直线y-3-2$\sqrt{2}$=0相切.
(1)求圆C的方程;
(2)若过点M(4,-1)的直线l与圆C相交于E,F两点,且$\overrightarrow{CE}$•$\overrightarrow{CF}$=0.求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知f(x)=3sin(x+$\frac{π}{6}$),则y=f(x)图象的对称轴是x=kπ+$\frac{π}{3}$,k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知实数x,y满足$\left\{\begin{array}{l}{x+2y-2≥0}\\{x≤2}\\{y≤1}\end{array}\right.$,则z=2x+y的最大值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设a≥0,若P=$\sqrt{a}$+$\sqrt{a+8}$,Q=$\sqrt{a+2}$+$\sqrt{a+6}$,则P<Q(请用“>”,“<““=“符号填)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知i是虚数单位,若复数z满足(1+i)z=2+i,则$\overline{z}$=(  )
A.$\frac{3}{2}$-$\frac{1}{2}$iB.$\frac{3}{2}$+$\frac{1}{2}$iC.1+$\frac{1}{2}$iD.1-$\frac{1}{2}$i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,洪泽湖湿地为拓展旅游业务,现准备在湿地内建造一个观景台P,已知射线AB,AC为湿地两边夹角为120°的公路(长度均超过2千米),在两条公路AB,AC上分别设立游客接送点M,N,从观景台P到M,N建造两条观光线路PM,PN,测得AM=2千米,AN=2千米.
(1)求线段MN的长度;
(2)若∠MPN=60°,求两条观光线路PM与PN之和的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某赛季甲队每场比赛平均失球数是1.5,失球个数的标准差为1.1;乙队每场比赛平均失球数是2.1,失球个数的标准差为0.4.下列说法中,错误的是(  )
A.平均说来甲队比乙队防守技术好
B.甲队比乙队技术水平更稳定
C.甲队有时表现比较差,有时表现又比较好
D.乙队很少不失球

查看答案和解析>>

同步练习册答案