精英家教网 > 高中数学 > 题目详情
已知sinα+cosα=
7
13
(0<α<π),则tanα=(  )
分析:已知等式两边平方,利用同角三角函数间的基本关系化简,求出2sinαcosα的值小于0,得到sinα>0,cosα<0,再利用完全平方公式及同角三角函数间的基本关系求出sinα与cosα的值,即可求出tanα的值.
解答:解:将已知等式sinα+cosα=
7
13
①两边平方得:(sinα+cosα)2=sin2α+2sinαcosα+cos2α=1+2sinαcosα=
49
169

∴2sinαcosα=-
120
169
<0,
∵0<α<π,
∴sinα>0,cosα<0,即sinα-cosα>0,
∴(sinα-cosα)2=1-2sinαcosα=
289
169

∴sinα-cosα=
17
13
②,
联立①②,解得:sinα=
12
13
,cosα=-
5
13

则tanα=-
12
5

故选B
点评:此题考查了同角三角函数间的基本关系,以及完全平方公式的应用,熟练掌握基本关系是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知sinα-cosα=
2
,求sin2α的值(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα+cosα=
15
且0<α<π,求值:
(1)sin3α-cos3α;  
(2)tanα.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinθ+cosθ=
2
2
(0<θ<π),则cos2θ的值为
-
3
2
-
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinθ+cosθ=
15
,0<θ<π
,求下列各式的值:
(1)sinθ•cosθ
(2)sinθ-cosθ
(3)tanθ

查看答案和解析>>

同步练习册答案