精英家教网 > 高中数学 > 题目详情

已知数列{an}满足数学公式,则该数列的前10项的和为________.

77
分析:根据数列递推式,可得数列{a2k-1}是首项为1、公差为1的等差数列,因此a2k-1=k,数列{a2k}是首项为2、公比为2的等比数列,因此a2k=2k,从而可求数列的前10项的和.
解答:因为a1=1,a2=2,所以a3=(1+cos2 )a1+sin2 =a1+1=2,a4=(1+cos2π)a2+sin2π=2a2=4.
一般地,当n=2k-1(k∈N*)时,a2k+1=[1+cos2 ]a2k-1+sin2 =a2k-1+1,即a2k+1-a2k-1=1.
所以数列{a2k-1}是首项为1、公差为1的等差数列,因此a2k-1=k.
当n=2k(k∈N*)时,a2k+2=(1+cos2 )a2k+sin2 =2a2k
所以数列{a2k}是首项为2、公比为2的等比数列,因此a2k=2k
该数列的前10项的和为1+2+2+4+3+8+4+16+5+32=77
故答案为:77
点评:本题主要考查了数列的递推式,注意数列中的奇数项和偶数项的不同是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若数列{bn}满足:bn=
1
an-
1
2
(n∈N*)
,试证明数列bn-1是等比数列;
(2)求数列{anbn}的前n项和Sn
(3)数列{an-bn}是否存在最大项,如果存在求出,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
则{an}的通项公式
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)证明:对于一切正整数n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k项的和S3k(用k,a表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)已知数列{an}满足an+1=an+2,且a1=1,那么它的通项公式an等于
2n-1
2n-1

查看答案和解析>>

同步练习册答案