(1)设动点的坐标为P(x,y),则
=(x,y-1),
=(x,y+1),
=(1-x,-y)
∵
·
=k|
|
2,∴x
2+y
2-1=k[(x-1)
2+y
2] 即(1-k)x
2+(1-k)y
2+2kx-k-1=0.
若k=1,则方程为x=1,表示过点(1,0)是平行于y轴的直线.
若k≠1,则方程化为:
,表示以(-
,0)为圆心,以
为半径的圆.
(2)当k=2时,方程化为(x-2)
2+y
2=1.∵2
+
=2(x,y-1)+(x,y+1)=(3x,3y-1),
∴|2
+
|=
.又x
2+y
2=4x-3,∴|2
+
|=
∵(x-2)
2+y
2=1,∴令x=2+cosθ,y=sinθ,
则36x-6y-26=36cosθ-6sinθ+46=6
cos(θ+φ)+46∈[46-6
,46+6
],
∴|2
+
|
max=
=3+
,|2
+
|
min=
=
-3.