直线![]()
与椭圆
相交于
,
两点,
为坐标原点.
(Ⅰ)当点
的坐标为
,且四边形
为菱形时,求
的长;
(Ⅱ)当点
在
上且不是
的顶点时,证明:四边形
不可能为菱形.
利用椭圆的对称性,结合图形完成第(I)小题.设出直线方程,把直线方程和椭圆方程联立,设而不求,结合菱形的特点进行判断.
【解析】 (I) 椭圆W:
的右顶点
,因为四边形OABC为菱形,所以
和
互相垂直平分.
所以可设
,代入椭圆方程得
,解得
.
所以菱形OABC的面积为
.
(II)假设四边形OABC为菱形.
因为点B不是W的顶点,且直线AC不过原点,所以可设AC的方程为y=kx+m,k≠0,m≠0..
由
消去y并整理得
.
设
,则
,
,
所以AC的中点
.
因为M为AC和OB的交点,所以直线OB的斜率为
.
因为
,所以AC和OB不垂直.
所以四边形OABC不是菱形,与假设矛盾.
所以当B不是W的顶点,四边形OABC不可能是菱形.
【考点定位】本题考查了椭圆的性质和直线与椭圆的位置关系.通过整体代换,设而不求,考查了数据处理能力和整体思想的应用.
科目:高中数学 来源: 题型:
| x2 |
| a2 |
| y2 |
| b2 |
| a2 |
| c |
| n |
| m |
查看答案和解析>>
科目:高中数学 来源: 题型:
| x2 |
| a2 |
| y2 |
| b2 |
| ||
| 3 |
2
| ||
| 3 |
| 1 |
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| x2 |
| a2 |
| y2 |
| b2 |
| a2 |
| c |
查看答案和解析>>
科目:高中数学 来源: 题型:
| x2 |
| a2 |
| y2 |
| b2 |
| 10 |
| 3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com