精英家教网 > 高中数学 > 题目详情
三棱锥中,是底面,且这四个顶点都在半径为2的球面上,则这个三棱锥的三个侧棱长的和的最大值为(   )
A.16B.C.D.32
B

试题分析:∴PA,PB,PC两两垂直,又∵三棱锥P-ABC的四个顶点均在半径为1的球面上,∴以PA,PB,PC为棱的长方体的对角线即为球的一条直径.∴16=PA2+PB2+PC2,因为则这个三棱锥的三个侧棱长的和,则借助于二次函数的性质可知其最大值为,选B.
点评:本题考查的知识点是棱锥的侧棱长和,基本不等式,棱柱的外接球,其中根据已知条件,得到棱锥的外接球直径等于以PA,PB,PC为棱的长方体的对角线,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图所示,在三棱锥中,平面分别是的中点,交于交于点,连接

(Ⅰ)求证:
(Ⅱ)求二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知平面平面,△为等边三角形,的中点.

(1)求证:平面
(2)求证:平面平面
(3)求直线和平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥中,,点分别为的中点.

(1)求直线与平面所成角的正弦值;
(2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

将一个等腰梯形绕着它的较长的底边所在的直线旋转一周,所得的几何体包括
A.一个圆台、两个圆锥B.两个圆台、一个圆柱
C.两个圆台、一个圆锥D.一个圆柱、两个圆锥

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图1,,过动点A,垂足在线段上且异于点,连接,沿将△折起,使(如图2所示).

(1)当的长为多少时,三棱锥的体积最大;
(2)当三棱锥的体积最大时,设点分别为棱的中点,试在棱上确定一点,使得,并求与平面所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

正二十边形的对角线的条数是        

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在正三棱柱中,已知在棱上,且,若与平面所成的角为,则      .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个正方体的顶点都在球面上,它的棱长为2cm,则球的表面积是(   )
A.8cm B.12cm2   
C.16cm2  D.20cm

查看答案和解析>>

同步练习册答案