精英家教网 > 高中数学 > 题目详情
(x+1)3+(x-2)8=a0+a1(x-1)2+a2(x-1)2+…+a8(x-1)8,则a6=
28
28
分析:[(x-1)+2]3展开式中不含(x-1)6项,[(x-1)-1]8中含(x-1)6项为T2+1=
C
2
8
(x-1)6(-1)2,从而求出所求.
解答:解:(x+1)3+(x-2)8=[(x-1)+2]3+[(x-1)-1]8
[(x-1)+2]3展开式中不含(x-1)6项,[(x-1)-1]8中含(x-1)6项为T2+1=
C
2
8
(x-1)6(-1)2
∴a6=
C
2
8
=28
故答案为:28
点评:本题主要考查了二项式定理的应用,以及二项展开式的通项公式,求展开式中某项的系数,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某同学在研究函数y=f(x)(x≥1,x∈N)的性质,他已经正确地证明了函数f(x)满足:f(3x)=3f(x),
并且当1≤x≤3时,f(x)=[1-|x-2|],这样对任意x≥1,他都可以求f(x)的值了,比如f(3×
8
3
)=3f(
8
3
)=3[1-|
8
3
-2|]=1,f(54)=33f(
54
33
)=27,请你根据以上信息,求出集合M={x|f(x)=f(99)}中最小的元素是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=
x
+1,h(x)=
1
x+3
,x∈(-3,a],其中a为常数且a>0,令函数f(x)=g(x)•h(x).
(1)求函数f(x)的表达式,并求其定义域;
(2)当a=
1
4
时,求函数f(x)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,使得|f(x)|≤M成立,则称f(x) 是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=4-x+p•2-x+1,g(x)=
1-q•2x
1+q•2x

(Ⅰ)当p=1时,求函数f(x)在(-∞,0)上的值域,并判断函数f(x)在(-∞,0)上是否为有界函数,请说明理由;
(Ⅱ)若q∈(0,
2
2
]
,函数g(x)在[0,1]上的上界是H(q),求H(q)的取值范围;
(Ⅲ)若函数f(x)在[0,+∞)上是以3为上界的有界函数,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江苏省苏州中学高三(上)调研数学试卷(解析版) 题型:解答题

对于函数f(x),g(x),h(x),如果存在实数a,b,使得h(x)=af(x)+bg(x),那么称h(x)为f(x),g(x)的线性生成函数.
(1)给出如下两组函数,试判断h(x)是否分别为f(x),g(x)的线性生成函数,并说明理由.
第一组:
第二组:f(x)=x2-x,g(x)=x2+x+1,h(x)=x2-x+1.
(2)已知f(x)=log2x,g(x)=log0.5x的线性生成函数为h(x),其中a=2,b=1.若不等式3h2(x)+2h(x)+t<0在x∈[2,4]上有解,求实数t的取值范围;
(3)已知的线性生成函数h(x),其中a>0,b>0.若h(x)≥b对a∈[1,2]恒成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010年江苏省宿迁市高考数学模拟试卷(一)(解析版) 题型:解答题

某同学在研究函数y=f(x)(x≥1,x∈N)的性质,他已经正确地证明了函数f(x)满足:f(3x)=3f(x),
并且当1≤x≤3时,f(x)=[1-|x-2|],这样对任意x≥1,他都可以求f(x)的值了,比如f(3×)=3f()=3[1-|-2|]=1,f(54)=33f()=27,请你根据以上信息,求出集合M={x|f(x)=f(99)}中最小的元素是   

查看答案和解析>>

同步练习册答案