精英家教网 > 高中数学 > 题目详情
已知数列{an}满足a1=1,且4an+1-anan+1+2an=9(n∈N*).
(1)求a2,a3,a4的值,并猜想{an}的通项公式;
(2)用数学归纳法证明你的猜想.
(1)由4an+1-anan+1+2an=9得an+1=
9-2an
4-an
=2-
1
an-4

∵a1=1,
∴a2=2-(-
1
3
)=
7
3

同理可求,a3=
13
5
,a4=
19
7
,猜想an=
6n-5
2n-1
             …(5分)
(2)证明:①当n=1时,猜想成立.
②设当n=k(k∈N*)时,猜想成立,即ak=
6k-5
2k-1

则当n=k+1时,有ak+1=2-
1
ak-4
=2-
1
6k-5
2k-1
-4
=
6k+1
2k+1
=
6(k+1)-5
2(k+1)-1

所以当n=k+1时猜想也成立.
综合①②,猜想对任何n∈N*都成立.                      …(10分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若数列{bn}满足:bn=
1
an-
1
2
(n∈N*)
,试证明数列bn-1是等比数列;
(2)求数列{anbn}的前n项和Sn
(3)数列{an-bn}是否存在最大项,如果存在求出,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
则{an}的通项公式
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)证明:对于一切正整数n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k项的和S3k(用k,a表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)已知数列{an}满足an+1=an+2,且a1=1,那么它的通项公式an等于
2n-1
2n-1

查看答案和解析>>

同步练习册答案