精英家教网 > 高中数学 > 题目详情

【题目】南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为垛积术”.现有高阶等差数列,其前7项分别为14814233654,则该数列的第19项为( )(注:

A.1624B.1024C.1198D.1560

【答案】B

【解析】

根据高阶等差数列的定义,求得等差数列的通项公式和前项和,利用累加法求得数列的通项公式,进而求得.

依题意

14814233654,……

两两作差得

:3,4,6,9,13,18,……

两两作差得

12345,……

设该数列为,令,设的前项和为,又令,设的前项和为.

,进而得,所以,则,所以,所以.

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图1,在矩形中,已知,点分别在边上,且,将梯形沿折起,使在平面上的射影恰好落在线段靠近的三等分点处,得到图2中的立体图形.

12

1)在图2中,求证:平面

2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

)讨论的单调性;

)若有两个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数,下列说法正确的是( )

1的极小值点;

2)函数有且只有1个零点;

3恒成立;

4)设函数,若存在区间,使上的值域是,则.

A.(1) (2)B.(2)(4)C.(1) (2) (4)D.(1)(2)(3)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=丨x+a+1丨+丨x-丨,(a>0)。

(1)证明:f(x)≥5;

(2)若f(1)<6成立,求实数a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代数学著作《算法统宗》中记载了这样的一个问题:三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还,其大意为:有一个人走了378里路,第一天健步行走,从第二天起其因脚痛每天走的路程为前一天的一半,走了6天后到达了目的地,问此人第三天走的路程里数为(

A.192B.48C.24D.88

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,过焦点且垂直于轴的直线被椭圆所截得的弦长为.

1)求椭圆的标准方程;

2)若经过点的直线与椭圆交于不同的两点是坐标原点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,求的极值;

(2)若,都有成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)证明:在区间上单调递增;

2)若存在,使得的值域相同,求实数的取值范围.

查看答案和解析>>

同步练习册答案