精英家教网 > 高中数学 > 题目详情
10.计算下列各题:
(1)lg4+lg25-$\sqrt{\frac{25}{9}}$+(4-π)0;      
(2)$\frac{lg32-lg4}{lg2}$+27${\;}^{\frac{2}{3}}$+256${\;}^{\frac{3}{4}}$.

分析 (1)利用对数与指数的运算性质即可得出.
(2)利用对数与指数的运算性质即可得出.

解答 解:(1)原式=lg102-$\frac{5}{3}$+1=$\frac{4}{3}$.
(2)原式=$\frac{lg8}{lg2}$+${3}^{3×\frac{2}{3}}$+${4}^{4×\frac{3}{4}}$=3+9+64=76.

点评 本题考查了对数与指数的运算性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知数列{an}是递增的等比数列,且a1+a4=9,a2a3=8.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设Sn为数列{an}的前n项和,bn=$\frac{{{S_{n+1}}-{S_n}}}{{{S_n}{S_{n+1}}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知-1<a<b<2,则a-b的范围是-3<a-b<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,内角A,B的对边分别是a,b,且A=30°,a=2$\sqrt{2}$,b=4,那么满足条件的△ABC(  )
A.有一个解B.有两个解C.无解D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知幂函数f(x)=xa的图象过点(2,$\sqrt{2}$),则f($\frac{1}{4}$)=(  )
A.-$\frac{1}{2}$B.2C.$\frac{1}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\left\{\begin{array}{l}{(a-1)x-\frac{1}{2}a,x≤1}\\{(a+1){x}^{2},x>1}\end{array}\right.$为R上的减函数,则实数a的取值范围是(  )
A.(-∞,-1)B.(-∞,-4)C.(-1,-4]D.(-∞,-4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若(a+b+c)(b+c-a)=3ab,且sinA=2sinBcosC,那么△ABC是(  )
A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设a,b∈R,ab≠0,给出下面四个命题:①a2+b2≥-2ab;②$\frac{a}{b}$+$\frac{b}{a}$≥2;③若a<b,则ac2<bc2;④若$\frac{a}{c^2}$>$\frac{b}{c^2}$.则a>b;其中真命题有(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知在直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}x=2cosθ\\ y=2sinθ\end{array}\right.$(θ为参数),直线l经过定点P(1$,\sqrt{2}$),倾斜角为$\frac{π}{3}$.
(1)写出直线l的参数方程和圆的标准方程;
(2)设直线l与圆相交于A,B两点,求|PA|•|PB|的值.

查看答案和解析>>

同步练习册答案