精英家教网 > 高中数学 > 题目详情

已知函数f(x)=数学公式-alnx(a∈R).
(1)若f(x)在x=2时取得极值,求a的值;
(2)求f(x)的单调区间.

解:(1,∵x=2是一个极值点,
,∴a=4.
此时=
∵f(x)的定义域是{x|x>0},
∴当0<x<2时,f′(x)<0;当x>2时,f′(x)>0.
∴当a=4时,x=2是f(x)的极小值点,∴a=4.(6分)
(2)∵,∴当a≤0时,
f(x)的单调递增区间为(0,+∞).
当a>0时,=
令f′(x)>0有,∴函数f(x)的单调递增区间为,+∞);
令f′(x)<0有
∴函数f(x)的单调递减区间为.(12分)
分析:(1)求出函数的导数f′(x),根据x=2是f′(x)一个极值点,利用f′(2)=0,可得a=4,再检验当a=4时,x=2是f(x)的极小值点符合题意;
(2)讨论导数的零点,可得当a≤0时,f(x)的单调递增区间为(0,+∞),当a>0时,函数f(x)的单调递增区间为,+∞),单调递减区间为
点评:本题考查了利用导数研究函数的单调性和函数数在某点取得极值的条件,属于中档题.做题时注意分类讨论思想的运用,以及取极值时的检验.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案