精英家教网 > 高中数学 > 题目详情
如果Sn=1+2+…+n(n∈N*),Tn=
S2
S2-1
×
S3
S3-1
×…×
Sn
Sn-1
(n≥2,n∈N*),则下列各数中与T2010最接近的数是(  )
A、2.9B、3.0
C、3.1D、3.2
分析:先利用等差数列的求和公式求出Sn=
n(n+1)
2
,代入Tn=
S2
S2-1
×
S3
S3-1
×… ×
Sn
Sn-1
,整理可得T2010=
3×2010
2012
,算出其近视值.
解答:解:∵Sn=1+2+…+n=
n(n+1)
2

Tn=
S2
S2-1
× 
S3
S3-1
×…×
Sn
Sn-1

T2010
S2
S2-1
×
S3
S3-1
×…× 
S2010
S2010- 1

=
2×3
1×4
× 
3×4
2×5
×
4×5
3×6
×…×
2010×2011
2009×2012

=
(2×3×4×…×2010)×(3×4×…×2011)
(1×2×3×…×2009)×(4×5×…×2012)

=
3×2010
2012
≈2.997
故选 B
点评:本题以等差数列的和公式为载体考查相消法求出Tn,在求Tn=
2×3
1×4
× 
3×4
2×5
× …×
2010×2011
2009×2012
要注意利用分组求积相消的技巧.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

大家知道,在数列{an}中,若an=n,则sn=1+2+3+…+n=
1
2
n2+
1
2
n
,若an=n2,则
sn=12+22+32+…+n2=
1
3
n3+
1
2
n2+
1
6
n
,于是,猜想:若an=n3,则sn=13+23+33+…+n3=an4+bn3+cn2+dn.
问:(1)这种猜想,你认为正确吗?
(2)不管猜想是否正确,这个结论是通过什么推理方法得到的?
(3)如果结论正确,请用数学归纳法给予证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P1(a1,b1),P2(a2,b2).…Pn(anbn)(n∈N*)都在函数y=1og
12
x
的图象上.
(1)若数列{bn}是等差数列,求证数列{an}是等比数列;
(2)若数列{an}的前n项和是Sn=1-2-n,过点Pn,Pn+1的值线与两坐标轴所围三角形面积为cn,求最小的实数t使cn≤t对n∈N*恒成立;
(3)若数列{bn}为由(2)中{an}得到的数列,在bk与bk+1之间插入3k-1(k∈N*)个3,得一新数列{dn},问是否存在这样的正整数m,使数列{dn}的前m项的和Sm=2008,如果存在,求出m的值,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

如果Sn=1+2+…+n(n∈N*),数学公式(n≥2,n∈N*),则下列各数中与T2010最接近的数是


  1. A.
    2.9
  2. B.
    3.0
  3. C.
    3.1
  4. D.
    3.2

查看答案和解析>>

科目:高中数学 来源:2010年上海市虹口区高考数学二模试卷(文理合卷)(解析版) 题型:选择题

如果Sn=1+2+…+n(n∈N*),(n≥2,n∈N*),则下列各数中与T2010最接近的数是( )
A.2.9
B.3.0
C.3.1
D.3.2

查看答案和解析>>

同步练习册答案