精英家教网 > 高中数学 > 题目详情
已知数列{an}满足an+1=2an+n+1,n∈N*
(1)若{an}是等差数列,求其首项a1和公差d;
(2)证明:{an}不可能是等比数列;
(3)若a1=-1,试比较an与(n-2)(n+1)的大小,并证明你的结论.
(1)证明:∵数列{an}满足an+1=2an+n+1,n∈N*
∴a2=2a1+2,
a3=2a2+3=4a1+7,
∴2a2=a1+a3
∴a1=-3,a2=-4,
∴d=-1.
(2)证明:假设{an}是等比数列,则a22=a1a3
∴(2a1+3)2=a1(4a1+7),
∴a1=-4,a2=-6,a3=-9,
又∵a4=2a3+4=-14,
∴a2a4≠a32,与等比数列的性质相矛盾,
∴假设错误.
故{an}不可能是等比数列.
(3)∵{an}是等差数列,首项a1=-1,公差d=-1,
∴an=-1+(n-1)×(-1)=-n.
∴an-(n-2)(n+1)=-n-n2+n+2=2-n2
∴n=1时,an-(n-2)(n+1)=2-n2>0,an>(n-2)(n+1);
n=2时,an-(n-2)(n+1)=2-n2<0,an<(n-2)(n+1).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若数列{bn}满足:bn=
1
an-
1
2
(n∈N*)
,试证明数列bn-1是等比数列;
(2)求数列{anbn}的前n项和Sn
(3)数列{an-bn}是否存在最大项,如果存在求出,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
则{an}的通项公式
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)证明:对于一切正整数n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k项的和S3k(用k,a表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)已知数列{an}满足an+1=an+2,且a1=1,那么它的通项公式an等于
2n-1
2n-1

查看答案和解析>>

同步练习册答案