精英家教网 > 高中数学 > 题目详情
求证(a>0,a≠1):
(1)loga(n2+n+1)+loga(n-1)=loga(n3-1)(n>1);
(2)loga(bs+b-s+2)+loga(bs+b-s-2)=2loga(bs-b-s)(b>1,s>0).
考点:对数的运算性质
专题:函数的性质及应用
分析:(1)由立方差公式可得(n2+n+1)×(n-1)=(n3-1),进而根据对数的运算性质可得:当n>1时,loga(n2+n+1)+loga(n-1)=loga(n3-1)
(2)由平方差公式和完全平方公式可得(bs+b-s+2)(bs+b-s-2)=(bs+b-s2-22=(bs-b-s2,进而根据对数的运算性质可得:当b>1,s>0时,loga(bs+b-s+2)+loga(bs+b-s-2)=2loga(bs-b-s
解答: 解:(1)∵(n2+n+1)×(n-1)=(n3-1),
∴当n>1时,loga(n2+n+1)+loga(n-1)=loga[(n2+n+1)(n-1)]=loga(n3-1)
(2)∵(bs+b-s+2)(bs+b-s-2)=(bs+b-s2-22=(bs-b-s2
∴当b>1,s>0时,
loga(bs+b-s+2)+loga(bs+b-s-2)=loga[(bs+b-s+2)(bs+b-s-2)]=loga(bs-b-s2=2loga(bs-b-s).
点评:本题考查的知识点是对数的运算性质,立方差公式,平方差公式和完全平方公式,难度不大,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=(log
1
2
x
2-log 
1
2
x+5,x∈[2,4],求f(x)的最值及相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱柱ABCD-A1B1C1D1中,A1A⊥底面ABCD,且A1A=4.梯形ABCD的面积为6,且AD∥BC,AD=2BC,AB=2.平面A1DCE与B1B交于点E.
(1)证明:EC∥A1D;
(2)求点C到平面ABB1A1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

某人去上班,先跑步,后步行.如果y表示该人所走的距离,x表示出发后的时间,则下列图象符合此人走法的是
 
.(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:不等式x2+x+1≤0的解集为R,命题q:不等式
x-2
x-1
≤0的解集为{x|1<x≤2},则命题“p∨q”“p∧q”“?p”“?q”中真命题的个数有
 
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={x|x<
18
}
m=3
2
,则下列关系式中正确的是(  )
A、m∈MB、{m}∈M
C、{m}?MD、m∉M

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+bx-a-ab(a≠0),当x∈(-1,3)时,f(x)>0;当x∈(-∞,-1)∪(3,+∞)时,f(x)<0.
(1)求f(x)在(-1,2)内的值域;
(2)若方程f(x)=c在[0,3]有两个不等实根,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

我国西部某省4A级风景区内住着一个少数民族村,该村投资了800万元修复和加强民俗文化基础设施,据调查,修复好村民俗文化基础设施后,任何一个月内(每月按30天计算)每天的旅游人数f(x)与第x天近似地满足f(x)=8+
8
x
(千人),且参观民俗文化村的游客人均消费g(x)近似地满足g(x)=143-|x-22|(元).
(1)求该村的第x天的旅游收入p(x)(单位千元,1≤x≤30,x∈N*)的函数关系;
(2)若以最低日收入的20%作为每一天纯收入的计量依据,并以纯收入的5%的税率收回投资成本,试问该村在两年内能否收回全部投资成本?

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)对任意的x∈R满足f(-x)=-f(x),当x≥0时,f(x)=x2-2x则不等式xf(x)>0的解集是(  )
A、(2,+∞)
B、(-2,0)∪(2,+∞)
C、(-∞,-2)∪(2,+∞)
D、(-2,0)∪(0,2)

查看答案和解析>>

同步练习册答案