精英家教网 > 高中数学 > 题目详情
,若函数在区间上是增函数,则的取值范围是      

试题分析:根据题意,由于函数在区间上是增函数,则说明其导数恒大与等于零,即,故可知
点评:主要是考查了函数的单调性,以及导数于函数单调性关系的 运用,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

是定义在上以2为周期的偶函数,已知,则函数 上(  )
A.是增函数且B.是增函数且
C.是减函数且D.是减函数且

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数在R上为单调函数,则a的取值范围是   

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的值域是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数f(x)=x3-12x在区间(k-1,k+1)上不是单调函数,则实数k的取值范围是(  )
A.k≤-3或-1≤k≤1或k≥3B.-3<k<-1或1<k<3
C.-2<k<2D.不存在这样的实数

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数
(1)求f(x)的单调区间;
(2)若当x∈[-2,2]时,不等式f(x)>m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知为正实数,函数上的最大值为,则上的最小值为                         

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

理科已知函数,当时,函数取得极大值.
(Ⅰ)求实数的值;(Ⅱ)已知结论:若函数在区间内导数都存在,且,则存在,使得.试用这个结论证明:若,函数,则对任意,都有;(Ⅲ)已知正数满足求证:当时,对任意大于,且互不相等的实数,都有

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数在区间(0,1]上是减函数,则的取值范围是_________。

查看答案和解析>>

同步练习册答案