精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C1 +y2=1,椭圆C2以C1的长轴为短轴,且与C1有相同的离心率.
(1)求椭圆C2的方程;
(2)设O为坐标原点,点A,B分别在椭圆C1和C2上, =2 ,求直线AB的方程.

【答案】
(1)解:椭圆 的长轴长为4,离心率为

∵椭圆C2以C1的长轴为短轴,且与C1有相同的离心率

∴椭圆C2的焦点在y轴上,2b=4,为

∴b=2,a=4

∴椭圆C2的方程为


(2)解:设A,B的坐标分别为(xA,yA),(xB,yB),

=2

∴O,A,B三点共线,且点A,B不在y轴上

∴设AB的方程为y=kx

将y=kx代入 ,消元可得(1+4k2)x2=4,∴

将y=kx代入 ,消元可得(4+k2)x2=16,∴

=2 ,∴ =4

,解得k=±1,

∴AB的方程为y=±x


【解析】(1)求出椭圆 的长轴长,离心率,根据椭圆C2以C1的长轴为短轴,且与C1有相同的离心率,即可确定椭圆C2的方程;(2)设A,B的坐标分别为(xA , yA),(xB , yB),根据 =2 ,可设AB的方程为y=kx,分别与椭圆C1和C2联立,求出A,B的横坐标,利用 =2 ,即可求得直线AB的方程.
【考点精析】利用椭圆的标准方程对题目进行判断即可得到答案,需要熟知椭圆标准方程焦点在x轴:,焦点在y轴:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了调查我市在校中学生参加体育运动的情况,从中随机抽取了16名男同学和14 名女同学,调查发现,男、女同学中分别有12人和6人喜爱运动,其余不喜爱.

(1)根据以上数据完成以下列联表:

(2)根据列联表的独立性检验,能否在犯错误的概率不超过0.010的前提下认为性别与喜爱运动有关?

(3)将以上统计结果中的频率视作概率,从我市中学生中随机抽取3人,若其中喜爱运动的人数为,求的分布列和均值.

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】传承传统文化再掀热潮,央视科教频道以诗词知识竞赛为主的《中国诗词大会》火爆荧屏.将中学组和大学组的参赛选手按成绩分为优秀、良好、一般三个等级,随机从中抽取了100名选手进行调查,如图是根据调查结果绘制的选手等级人数的条形图.

(1)若将一般等级和良好等级合称为合格等级,根据已知条件完成列联表,并据此资料你是否有的把握认为选手成绩“优秀”与文化程度有关?

注:,其中.

(2)若江西参赛选手共80人,用频率估计概率,试估计其中优秀等级的选手人数;

(3)如果在优秀等级的选手中取4名,在良好等级的选手中取2名,再从这6人中任选3人组成一个比赛团队,求所选团队中有2名选手的等级为优秀的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的通项公式是,若将数列中的项从小到大按如下方式分组:第一组:,第二组:,第三组:,…,则2018位于第________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在直角坐标系中,过点的直线的参数方程为为参数).以原点为极点, 轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求直线的普通方程和曲线的直角坐标方程;

(2)若直线与曲线相交于 两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校选派甲、乙、丙、丁、戊5名学生代表学校参加市级“演讲”和“诗词”比赛下面是他们的一段对话甲说:“乙参加‘演讲’比赛”;乙说:“丙参加‘诗词’比赛”;丙说“丁参加‘演讲’比赛”丁说:“戊参加‘诗词’比赛”戊说:“丁参加‘诗词’比赛”

已知这5个人中有2人参加演讲比赛3人参加诗词比赛,其中有2人说的不正确且参加“演讲”的2人中只有1人说的不正确.根据以上信息,可以确定参加“演讲”比赛的学生是

A. 甲和乙 B. 乙和丙 C. 丁和戊 D. 甲和丁

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】符号表示不大于的最大整数(,例如:

1)已知,分别求两方程的解集

2)设方程的解集为,集合,若,求的取值范围.

3)在(2)的条件下,集合,是否存在实数,若存在,请求出实数的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)求证: .

2)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:

sin213°cos217°sin13°cos17°

sin215°cos215°sin15°cos15°

sin218°cos212°sin18°cos12°

sin2(18°)cos248°sin(18°)cos48°

sin2(25°)cos255°sin(25°)cos55°.

试从上述五个式子中选择一个,求出这个常数;

根据的计算结果,将该同学的发现推广为三角恒等式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三年级举行了一次全年级的大型考试,在数学成绩优秀和非优秀的学生中,物理、化学、总分成绩也为优秀的人数如下表所示,则我们能以99%的把握认为数学成绩优秀与物理、化学、总分成绩优秀有关系吗?

物理优秀

化学优秀

总分优秀

数学优秀

228

225

267

数学非优秀

143

156

99

:该年级此次考试中数学成绩优秀的有360,非优秀的有880.

查看答案和解析>>

同步练习册答案