精英家教网 > 高中数学 > 题目详情
12.如图(1)所示,在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2,E、F、G分别为线段PC、PD、BC的中点,现将△PDC折起,使平面PDC⊥平面ABCD(图(2)).
(1)求证:平面EFG∥平面PAB;
(2)若点Q是线段PB的中点,求证:PC⊥平面ADQ;
(3)求三棱锥C-EFG的体积.

分析 (1)证明EF∥AB.利用直线与平面平行的判定定理证明EF∥平面PAB.然后利用平面与平面平行的判定定理证明平面EFG∥平面PAB.
(2)连接DE,EQ,证明PD⊥AD,AD⊥PC.推出DE⊥PC,利用直线与平面垂直的判定定理证明PC⊥平面ADQ.
(3)利用等体积VC-EFG=VG-CEF,转化求解即可.

解答 解:(1)证明:∵E、F分别是PC,PD的中点,
∴EF∥CD
又CD∥AB.∴EF∥AB.
∵EF?平面PAB,AB?平面PAB,
∴EF∥平面PAB.
同理,EG∥平面PAB,∵EF∩EG=E,EF?平面EFG,EG?平面EFG
∴平面EFG∥平面PAB.                …(4分)
(2)解:连接DE,EQ,
∵E、Q分别是PC、PB的中点,∴EQ∥BC,又 BC∥AD.
∴EQ∥AD
∵平面PDC⊥平面ABCD,PD⊥DC,∴PD⊥平面ABCD.∴PD⊥AD,
又AD⊥DC,PD∩DC=D∴AD⊥平面PDC,∴AD⊥PC.
在△PDC中,PD=CD,E是PC的中点,∴DE⊥PC,
∵DE∩AD=D∴PC⊥平面ADEQ,即PC⊥平面ADQ.  …(8分)
(3)VC-EFG=VG-CEF=$\frac{1}{3}$S△CEF•GC=$\frac{1}{3}$×($\frac{1}{2}$×1×1)×1=$\frac{1}{6}$.…(12分)

点评 本题考查直线与平面垂直的判定定理以及平面与平面平行的判定定理,几何体的体积的求法,考查空间想象能力以及计算能力,转化思想的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知{an}为等差数列,Sn为其前n项和.若a1+a9=18,a4=7,则S10=100.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知倾斜角为θ的直线,与直线x-3y+1=0垂直,则$\frac{2}{{3{{sin}^2}θ-{{cos}^2}θ}}$=(  )
A.$\frac{10}{3}$B.一$\frac{10}{3}$C.$\frac{10}{13}$D.一$\frac{10}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.点P在边长为2的正方形ABCD内运动,则动点P到定点A的距离|PA|<1的概率为(  )
A.$\frac{π}{4}$B.$\frac{π}{16}$C.$\frac{1}{4}$D.$\frac{1}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知a>0,a≠1,设p:函数y=ax在x∈(-∞,+∞)上单调递减,q:曲线y=x2+(2a-3)x+1与x轴交于不同的两点.若“p∧q”为假命题,“p∨q”为真命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知{an}为等差数列,且a4=8,a3+a7=20.
(1)求数列{an}的通项公式an
(2)设${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,某地要在矩形区域OABC内建造三角形池塘OEF,E,F分别在AB,BC边上,OA=5米,OC=4米,∠EOF=$\frac{π}{4}$,设CF=x,AE=y.
(1)试用解析式将y表示成x的函数;
(2)求三角形池塘OEF面积S的最小值及此时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设$f(x)=kx+m,g(x)=lnx-\frac{1}{x}$.
(1)若函数f(x)-g(x)在区间(0,+∞)上减函数,求k的取值范围;
(2)当k=2时,若函数f(x)的图象是函数g(x)的图象的切线,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知全集U=R,集合A={x|x2-2ax-3a2<0},B={x|x2-2x-a2-2a<0}.
(1)当a=12时,求(∁UB)∩A;
(2)命题P:x∈A,命题q:x∈B,若q是P的必要条件,求实数a的取值范围.

查看答案和解析>>

同步练习册答案