精英家教网 > 高中数学 > 题目详情
(2013•唐山二模)选修4-5:不等式选讲
已知f(x)=|ax-4|-|ax+8|,a∈R
(Ⅰ)当a=2时,解不等式f(x)<2;
(Ⅱ)若f(x)≤k恒成立,求k的取值范围.
分析:(I)当a=2时,f(x)=2(|x-2|-|x+4|),再对x的值进行分类讨论转化成一次不等式,由此求得不等式的解集.
(II)f(x)≤k恒成立,等价于k≥f(x) max,由此求得实数k的取值范围.
解答:解:(Ⅰ)当a=2时,
f(x)=2(|x-2|-|x+4|)=
12,x<-4
-4x-4,-4≤x≤2
-12,x>2

当x<-4时,不等式不成立;
当-4≤x≤2时,由-4x-4<2,得-
3
2
<x≤2;
当x>2时,不等式必成立.
综上,不等式f(x)<2的解集为{x|x>-
3
2
}.…(6分)
(Ⅱ)因为f(x)=|ax-4|-|ax+8|≤|(ax-4)-(ax+8)|=12,
当且仅当ax≤-8时取等号.
所以f(x)的最大值为12.
故k的取值范围是[12,+∞).…(10分)
点评:本题主要考查绝对值的意义,绝对值不等式的解法,体现了等价转化的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•唐山二模)某校学习小组开展“学生语文成绩与外语成绩的关系”的课题研究,对该校高二年级800名学生上学期期末语文和外语成绩,按优秀和不优秀分类得结果:语文和外语都优秀的有60人,语文成绩优秀但外语不优秀的有140人,外语成绩优秀但语文不优秀的有100人.
(Ⅰ)能否在犯错概率不超过0.001的前提下认为该校学生的语文成绩与外语成绩有关系?
(Ⅱ)4名成员随机分成两组,每组2人,一组负责收集成绩,另一组负责数据处理.求学生甲分到负责收集成绩组,学生乙分到负责数据处理组的概率.
p(K2≥k0 0.010 0.005 0.001
k0 6.635 7.879 10.828
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•唐山二模)若命题“?x0∈R,使得
x
2
0
+mx0+2m-3<0
”为假命题,则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•唐山二模)已知函数f(x)=sin(2x+α)在x=
π
12
时有极大值,且f(x-β)为奇函数,则α,β的一组可能值依次为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•唐山二模)双曲线
x2
5
-
y2
4
=1
的顶点和焦点到其渐近线距离的比是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•唐山二模)在数列{an}中,a1=1,a2=2,an+2等于an+an+1除以3的余数,则{an}的前89项的和等于
100
100

查看答案和解析>>

同步练习册答案