精英家教网 > 高中数学 > 题目详情
7.命题“存在x0∈R使得2${\;}^{{x}_{0}}$≤1”的否定是(  )
A.不存在x0∈R使得2${\;}^{{x}_{0}}$>0B.存在x0∈R使得2${\;}^{{x}_{0}}$>0
C.对任意x∈R,2x>0D.对任意x∈R,2x≤0

分析 利用特称命题的否定是全称命题,写出结果即可.

解答 解:因为特称命题的否定是全称命题所以命题“存在x0∈R使得2${\;}^{{x}_{0}}$≤1”的否定是:对任意x∈R,2x>0,
故选:C.

点评 本题考查命题的否定特称命题与全称命题的否定关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.有四个命题
①p:f(x)=lnx-2+λ在区间(1,2)上有一个零点,q:e0.2>e0.3,p∧q为真命题
②当x>1时,f(x)=x2,g(x)=x${\;}^{\frac{1}{3}}$,h(x)=x-2的大小关系是h(x)<g(x)<f(x)
③若f′(x0)=0,则f(x)在x=x0处取得极值
④若不等式2-3x-2x2>0的解集为P,函数y=$\sqrt{x+2}$+$\sqrt{1-2x}$的定义域为Q,则“x∈P”是“x∈Q”的充分不必要条件,其中正确命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(1-x)+1,-1≤x≤k}\\{x(x-1)^{2},k≤x≤a}\end{array}\right.$.若存在k使得函数f(x)的值域为[0,2],则实数a的取值范围是(  )
A.[1,2]B.(1,2]C.($\frac{1}{2}$,2]D.[$\frac{1}{2}$,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在正项等比数列{an}中,${a_2}=8,\;\;16{a_4}^2={a_1}•{a_5}$,则等比数列{an}的前n项积Tn中最大的值是(  )
A.T3B.T4C.T5D.T6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列命题中的假命题是(  )
A.?x∈R,x3<0
B.在斜二测画法中,直观图的面积是原图形面积的4$\sqrt{2}$
C.“a>0”是“|a|>0”充分不必要的条件
D.关于x的不等式x2-2ax-8a2<0(a>0)的解集为(x1,x2),且x2-x1=15,则$a=\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=|x-3|-|x+2|.
(1)若不等式f(x)≥|m-1|有解,求实数m的最小值M;
(2)在(1)的条件下,若正数a,b满足3a+b=-M,证明:$\frac{3}{b}$+$\frac{1}{a}$≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.写出命题“存在一个常数M,对任意的x,都有|f(x)|≤M”的否定是存在一个常数M,存在实数x,使得|f(x)|>M.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知f(x)=log2(3x-2).
(1)求函数的定义域;
(2)若log2x>f(x),求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设函数f(x)=-x3+2ex2-mx+lnx,若方程f(x)=x有解,则实数m的最大值是e2+$\frac{1}{e}$-1.

查看答案和解析>>

同步练习册答案