精英家教网 > 高中数学 > 题目详情
6.将直径为2的半圆绕直径所在的直线旋转半周而形成的曲面所围成的几何体的表面积为(  )
A.B.C.D.

分析 判断几何体的特征,然后求解即可.

解答 解:由题意知,该几何体为半球,表面积为大圆面积加上半个求面积,$S=π×{1^2}+\frac{1}{2}×4×π×{1^2}=3π$,
故选:B.

点评 本题考查旋转体的几何特征,球的表面积的求法,考查空间想象能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知f(x)=asinx+bcosx(a>0),f($\frac{π}{4}$)=$\sqrt{2}$,且f(x)的最大值是$\sqrt{10}$,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知中心在原点O,焦点在x轴上的椭圆,离心率$e=\frac{1}{2}$,且椭圆过点$(1,\frac{3}{2})$.
(Ⅰ)求椭圆的方程;
(Ⅱ)椭圆左,右焦点分别为F1,F2,过F2的直线l与椭圆交于不同的两点A、B,则△F1AB的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,AB=1,BM⊥PD于点M.
(1)求证:AM⊥PD;
(2)求直线BM与平面ABCD所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=sinφ+cosφ}\\{y=sin2φ}\end{array}\right.$(φ 为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为:ρsin(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$t(其中t为常数).
(1)若曲线C1与C2只有一个公共点,求t的取值范围.
(2)当t=-2时,求曲线C1的点与曲线C2上任取一点的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知边长为1的等边三角形△ABC,向量$\vec a、\vec b$满足$\overrightarrow{AB}$=2$\overrightarrow{a}$,$\overrightarrow{AC}$=2$\overrightarrow{a}$+$\overrightarrow{b}$,则下列结论中正确的是②④.(写出所有正确结论得序号)
①$\vec a$为单位向量;②$\vec b$为单位向量;③$<\vec a,\vec b>=\frac{π}{3}$;④(4$\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{BC}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知f(x)是定义在[-2,2]上的奇函数,当x∈(0,2]时,f(x)=2x-1,函数g(x)=x2-2x+m,如果对于任意x1∈[-2,2],存在x2∈[-2,2],使得g(x2)=f(x1),则实数m的取值范围是(  )
A.(-∞,-2)B.(-5,-2)C.[-5,-2]D.(-∞,-2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若向量$\overrightarrow{a}$、$\overrightarrow{b}$满足$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(1,-3),则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角等于(  )
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若a>b,则下列选项一定成立的是(  )
A.a2>b2B.ac>bcC.$\frac{1}{a}<\frac{1}{b}$D.ac2≥bc2

查看答案和解析>>

同步练习册答案