精英家教网 > 高中数学 > 题目详情
精英家教网在三棱柱ABC-A1B1C1中,侧面ABB1A1为矩形,AB=1,AA1=
2
,D为AA1的中点,BD与AB1交于点O,CO⊥侧面ABB1A1
(I)证明:BC⊥AB1
(Ⅱ)若OC=OA,求三棱锥C1-ABC的体积.
分析:(I)利用△AOD∽△B1OB,可求得OA、OD的长,根据勾股定理可证AB1⊥BD,可证AB1⊥平面CBD,从而可证线线垂直;
(II)由(1)知OC为三棱锥C-ABA1的高,底面△ABA1为直角三角形,利用三棱锥的换底性求得三棱锥的体积.
解答:精英家教网解:(I)证明:由题意得BD=
AB2+AD2
=
6
2
,AB1=
3

且△AOD∽△B1OB,
AO
OB1
=
DO
OB
=
AD
BB1
=
1
2
,∴OD=
1
3
BD=
6
6
,AO=
3
3

∵AO2+OD2=AD2,∴AB1⊥BD,
又CO⊥侧面ABB1A1,∴AB1⊥CO,
又BD与CO交于点O,∴AB1⊥面CBD,
又∵BC?面CBD,∴BC⊥AB1
(II)∵OC=OA=
3
3
,且A1C1∥平面ABC,
由(1)知OC为三棱锥C-ABA1的高,
底面△ABA1为直角三角形,
VC1-ABC =VC-ABA1=
1
3
S△ABA1×OC=
1
3
×
1
2
×1×
2
×
3
3
=
6
18
点评:本题考查了棱锥的体积计算,考查了线面垂直的判定与性质,考查了面面垂直的判定,考查学生的空间想象能力与运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知三棱柱ABC-A1B1C1的三视图如图所示,其中主视图AA1B1B和左视图B1BCC1均为矩形,在俯视图△A1B1C1中,A1C1=3,A1B1=5,cos∠A1=
35

(1)在三棱柱ABC-A1B1C1中,求证:BC⊥AC1
(2)在三棱柱ABC-A1B1C1中,若D是底边AB的中点,求证:AC1∥平面CDB1
(3)若三棱柱的高为5,求三视图中左视图的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图:在正三棱柱ABC-A1 B1 C1中,AB=
AA13
=a,E,F分别是BB1,CC1上的点且BE=a,CF=2a.
(Ⅰ)求证:面AEF⊥面ACF;
(Ⅱ)求三棱锥A1-AEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在三棱柱ABC-A1B1C1中,已知AB=AC=AA1=
5
,BC=4,在A1在底面ABC的投影是线段BC的中点O.
(1)求点C到平面A1ABB1的距离;
(2)求二面角A-BC1-B1的余弦值;
(3)若M,N分别为直线AA1,B1C上动点,求MN的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西)在三棱柱ABC-A1B1C1中,已知AB=AC=AA1=
5
,BC=4,在A1在底面ABC的投影是线段BC的中点O.
(1)证明在侧棱AA1上存在一点E,使得OE⊥平面BB1C1C,并求出AE的长;
(2)求平面A1B1C与平面BB1C1C夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•北京)如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.
(Ⅰ)求证:AA1⊥平面ABC;
(Ⅱ)求证二面角A1-BC1-B1的余弦值;
(Ⅲ)证明:在线段BC1上存在点D,使得AD⊥A1B,并求
BDBC1
的值.

查看答案和解析>>

同步练习册答案