分析 根据向量共线的充要条件,若m$\overrightarrow{a}$-3$\overrightarrow{b}$与向量$\overrightarrow{a}$+(2-m)$\overrightarrow{b}$共线,就能得到含m的等式,解出λ即可.
解答 解;∵向量$\overrightarrow{a}$,$\overrightarrow{b}$是两个不共线的向量,且m$\overrightarrow{a}$-3$\overrightarrow{b}$与向量$\overrightarrow{a}$+(2-m)$\overrightarrow{b}$共线,
∴存在常数k,使得m$\overrightarrow{a}$-3$\overrightarrow{b}$=k($\overrightarrow{a}$+(2-m)$\overrightarrow{b}$)
∴$\left\{\begin{array}{l}k=m\\-3=(2-m)k\end{array}\right.$,可得m2-2m-3=0,解得m=-1,m=3.
实数m的值:-1或3.
点评 本题主要考查了向量共线的充要条件,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=$\sqrt{{x}^{2}-3x+10}$ | B. | y=2x+1(x>0) | C. | y=$\frac{1}{{x}^{2}}$ | D. | y=2x(x>0) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com