精英家教网 > 高中数学 > 题目详情
(2013•未央区三模)已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为
6
3
,过右焦点F且斜率为1的直线交椭圆C于A,B两点,N为弦AB的中点,O为坐标原点.
(1)求直线ON的斜率kON
(2)对于椭圆C上的任意一点M,设
OM
OA
OB
(λ∈R,μ∈R),求证:λ22=1.
分析:(1)利用椭圆的离心率,化简椭圆的方程,设出AB的方程,代入椭圆方程,利用韦达定理,中点坐标公式及斜率公式,即可求斜率;
(2)确定坐标之间的关系,利用M,A,B在椭圆上,结合韦达定理,即可证明结论.
解答:(1)解:设椭圆的焦距为2c,
因为
c
a
=
6
3
,所以有
a2-b2
a2
=
2
3
,故有a2=3b2
从而椭圆C的方程可化为x2+3y2=3b2                                        ①
∴右焦点F的坐标为(
2
b
,0),
据题意有AB所在的直线方程为:y=x-
2
b
.②
由①,②有:4x2-6
2
bx+3b2=0
.③
设A(x1,y1),B(x2,y2),弦AB的中点N(x0,y0),由③及韦达定理有:x0=
3
2
4
b
y0=x0-
2
b=-
2
4
b

所以kON=
y0
x0
=-
1
3
,即为所求.…(6分)
(2)证明:显然
OA
OB
可作为平面向量的一组基底,由平面向量基本定理,对于这一平面内的向量
OM
,有且只有一对实数λ,μ,使得等式
OM
OA
OB
成立.
设M(x,y),由(1)中各点的坐标有:(x,y)=λ(x1,y1)+μ(x2,y2),
故x=λx1+μx2,y=λy1+μy2.…(8分)
又因为点M在椭圆C上,所以有x1x2)2+3(λy1y2)2=3b2
整理可得:λ2(x12+3y12)+μ2(x22+3y22)+2λμ(x1x2+3y1y2)=3b2.④
由③有:x1+x2=
3
2
2
b
x1x2=
3
4
b2

所以x1x2+3y1y2=3b2-9b2+6b2=0   ⑤
又点A,B在椭圆C上,故有x12+3y12=x22+3y22=3b2.⑥
将⑤,⑥代入④可得:λ22=1.…(13分)
点评:本题考查椭圆的方程与性质,考查直线与椭圆的位置关系,考查向量知识的运用,考查韦达定理,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•未央区三模)如图,四棱锥P-ABCD的底面ABCD是正方形,棱PD⊥底面ABCD,PD=DC,E是PC的中点.
(1)证明:PA∥平面BDE;
(2)证明:平面BDE⊥平面PBC.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•未央区三模)连掷两次骰子得到的点数分别为m和n,若记向量
a
=(m,n)与向量
b
=(1,-2)
的夹角为θ,则θ为锐角的概率是
1
6
1
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•未央区三模)某三棱锥的三视图如图所示,该三棱锥的体积是为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•未央区三模)在数列{an}中,a1=
2
3
,且对任意的n∈N+都有an+1=
2an
an+1

(Ⅰ)求证:{
1
an
-1}
是等比数列;
(Ⅱ)若对于任意n∈N+都有an+1<pan,求实数P的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•未央区三模)若复数Z满足Z=(Z-1)-i,则复数Z的模为(  )

查看答案和解析>>

同步练习册答案