精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为,点A为椭圆的右顶点,点B为椭圆的上顶点,点F为椭圆的左焦点,且的面积是

Ⅰ.求椭圆C的方程;

Ⅱ.设直线与椭圆C交于PQ两点,点P关于x轴的对称点为不重合),则直线x轴交于点H,求面积的取值范围.

【答案】I. II.

【解析】

I.根据离心率和以及可求得的值,从而得到椭圆方程;II.联立直线方程与椭圆方程,假设坐标,可得坐标及根与系数的关系式:;根据直线的两点式方程表示出点坐标,代入根与系数关系式可求得,从而将所求面积变为:,换元整理后得到,利用求得所求面积的取值范围.

I.得:

,解得:,则

椭圆的标准方程为:

II. 不重合可知:

联立,整理可得:

,则

直线的方程为:

,解得:

即直线轴交点为:

,则

时,单调递增,则

,又

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列 其前项和为满足

)求的通项公式

)记求数列的前项和并证明

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学图书馆举行高中志愿者检索图书的比赛,从高一、高二两个年级各抽取10名志愿者参赛。在规定时间内,他们检索到的图书册数的茎叶图如图所示,规定册数不小于20的为优秀.

() 从两个年级的参赛志愿者中各抽取两人,求抽取的4人中至少一人优秀的概率;

() 从高一10名志愿者中抽取一人,高二10名志愿者中抽取两人,3人中优秀人数记为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知长方体中,分别为所在线段的中点,则满足的图形为(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市近郊有一块大约的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要建设如图所示的一个矩形场地,其中总面积为3000平方米,其中阴影部分为通道,通道宽度为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为平方米.

1)分别用表示的函数关系式,并给出定义域;

2)怎样设计能使取得最大值,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】茎叶图记录了甲,乙两组各四名同学单位时间内引体向上的次数,乙组记录中有一个数据模糊,无法确认,在图中以X表示.

1)如果X8,求乙组同学单位时间内引体向上次数的平均数和方差;

2)如果X9,分别从甲,乙两组中随机选取一名同学,求这两名同学单位时间内引体向上次数和为19的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fxxR

1)若fx)是偶函数,求实数a的值;

2)当a0时,不等式fsinxcosx)﹣f4+t≥0对任意的x恒成立,求实数t的取值范围;

3)当a0时,关于x的方程在区间[12]上恰有两个不同的实数解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列中,,且,其前项和为,且为等比数列.

(Ⅰ)求数列的通项公式;

(Ⅱ)若,记数列的前项和为.是整数,问是否存在正整数,使等式成立?若存在,求出和相应的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求的极大值;

2)讨论的单调区间;

3)对任意的,不等式恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案