精英家教网 > 高中数学 > 题目详情
正四棱锥P-ABCD的五个顶点在同一个球面上,若该正四棱锥的底面边长为2,侧棱长为
6
,则此球的体积为______.
如图所示,设球半径为R,底面中心为O'且球心为O,
∵正四棱锥P-ABCD中AB=2,PA=
6

∴AO'=
2
2
AB=
2
,可得PO'=
PA2-AO2
=2,OO'=PO'-PO=2-R.
∵在Rt△AOO'中,AO2=AO'2+OO'2
∴R2=(
2
2+(2-R)2,解之得R=
3
2

因此可得外接球的体积V=
4
3
πR3=
4
3
π•(
3
2
)3
=
9
2
π.
故答案为:
9
2
π
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知等腰直角△ABC的斜边AB长为2,以它的一条直角边AC所在直线为轴旋转一周形成一个几何体,则此几何体的侧面积为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD中,底面ABCD是边长为6为正方形,PA=PD,
PA⊥平面PDC,E为棱PD的中点.
(Ⅰ)求证:PB平面EAC;
(Ⅱ)求证:平面PAD⊥平面ABCD;
(Ⅲ)求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

一个几何体是由圆柱ADD1A1和三棱锥E-ABC组合而成,点A、B、C在圆O的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,如图2所示,其中EA⊥平面ABC,AB⊥AC,AB=AC,AE=2.

(1)求证:AC⊥BD;
(2)求三棱锥E-BCD的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

棱长为1的正四面体内切球的表面积为(  )
A.
π
6
B.
π
4
C.
3
2
π
D.
π
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

棱长为2的正方体的外接球的体积为(  )
A.8B.8πC.4
3
π
D.
8
2
π
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

正方体的顶点都在球面上,它的棱长是1cm,则球的表面积为______cm2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在三棱椎A-BCD中,侧棱AB,AC,AD两两垂直,△ABC,△ACD,△ADB的面积分别为
2
2
3
2
6
2
,则该三棱椎外接球的表面积为(  )
A.2πB.6πC.4
6
π
D.24π

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,用符号语言可表达为(  )
A.α∩β=m,n?α,m∩n=AB.α∩β=m,n∈α,m∩n=A
C.α∩β=m,n?α,A?m,A?nD.α∩β=m,n∈α,A∈m,A∈n

查看答案和解析>>

同步练习册答案