精英家教网 > 高中数学 > 题目详情
14、如图正方体ABCD-A1B1C1D1中,E,F,M,N分别是A1B1,BC,C1D1,B1C1的中点,求证:平面MNF⊥平面ENF.
分析:欲证平面MNF⊥平面ENF,先证直线与平面垂直,由题意可得:MN⊥EN,MN⊥NF,所以MN⊥面ENF,进一步易得平面MNF⊥平面ENF.
解答:解:连接A1C1,B1D1
∵E,M,N分别是A1B1,C1D1,B1C1的中点,
∴MN∥B1D1,EN∥A1C1
又∵A1C1⊥B1D1
∴MN⊥EN
在正方体ABCD-A1B1C1D1中,
∵F,N分别是BC,B1C1的中点,
∴NF∥B1B
又∵B1B⊥面A1B1C1D1
∴NF⊥面A1B1C1D1
∵MN?面A1B1C1D1
∴MN⊥NF
∵EN∩NF=N
∴MN⊥面ENF
又∵MN?平面MNF
∴平面MNF⊥平面ENF
点评:本小题主要考查空间线面关系,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图正方体ABCD-A1B1C1D1中,M为BC中点,则直线D1M与平面ABCD所成角的正切值为
 
,异面直线DC与D1M所成角的余弦值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图正方体ABCD-A1B1C1D1的棱长为1,点M是棱AA1的中点,点O是BD1的中点,求证:OM是异面直线AA1,BD1的公垂线,并求OM的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图正方体ABCD-A1B1C1D1的棱长为2,则点B1到直线AC的距离是
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(文)如图正方体ABCD-A1B1C1D1,在它的12条棱及12条面的对角线所在的直线中,选取若干条直线确定平面,在所有的这些平面中:
(1)、过B1C且与BD平行的平面有且只有一个;
(2)、过B1C且与BD垂直的平面有且只有一个;
(3)、存在平面α,过B1C与直线BD所成的角等于30.
其中是真命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

甲.如图1,平面VAD⊥平面ABCD,△VAD是等边三角形,ABCD是矩形,AB:AD=
2
:1,F是AB的中点.
(1)求VC与平面ABCD所成的角;
(2)求二面角V-FC-B的度数;
(3)当V到平面ABCD的距离是3时,求B到平面VFC的距离.
乙、如图正方体ABCD-A1B1C1D1中,E、F、G分别是B1B、AB、BC的中点.
(1)证明:D1F⊥EG;
(2)证明:D1F⊥平面AEG;
(3)求cos<
AE
D1B

注意:考生在(19甲)、(19乙)两题中选一题作答,如果两题都答,只以(19甲)计分.

查看答案和解析>>

同步练习册答案