精英家教网 > 高中数学 > 题目详情

设正项等比数列成等差数列,公差,且的前三项和为,则的通项为

A.B.C.D.

B

解析考点:等差数列的性质;等比数列的性质.
分析:由题设条件{lgan} 成等差数列,公差d=lg3,且{lgan} 的前三项和为6lg3,建立方程求出等差数列首项与公差,即可求出lgan,再求an
解:由题意{lgan} 成等差数列,公差d=lg3,且{lgan} 的前三项和为6lg3,
可得3lga1+3lg3=6lg3,
故有lga1=lg3,
所以lgan=lg3+(n-1)lg3=nlg3
即得an=3n
故选B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•浙江模拟)已知等比数列{an}的前n项和Sn=2n-a,n∈N*.设公差不为零的等差数列{bn}满足:b1=a1+2,且b2+5,b4+5,b8+5成等比.
(Ⅰ) 求a及bn
(Ⅱ) 设数列{log
2
an}的前n项和为Tn.求使Tn>bn的最小正整数n的值.

查看答案和解析>>

科目:高中数学 来源:2010年上海市卢湾区高三第二次模拟考试数学卷(文) 题型:解答题

(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.

从数列中取出部分项,并将它们按原来的顺序组成一个数列,称之为数列的一个子数列.

     设数列是一个首项为、公差为的无穷等差数列.

(1)若成等比数列,求其公比

(2)若,从数列中取出第2项、第6项作为一个等比数列的第1项、第2项,试问该数列是否为的无穷等比子数列,请说明理由.

(3)若,从数列中取出第1项、第项(设)作为一个等比数列的第1项、第2项.求证:当为大于1的正整数时,该数列为的无穷等比子数列.

 

查看答案和解析>>

科目:高中数学 来源:浙江模拟 题型:解答题

已知等比数列{an}的前n项和Sn=2n-a,n∈N*.设公差不为零的等差数列{bn}满足:b1=a1+2,且b2+5,b4+5,b8+5成等比.
(Ⅰ) 求a及bn
(Ⅱ) 设数列{log
2
an}的前n项和为Tn.求使Tn>bn的最小正整数n的值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省金华市东阳市南马高中高三(上)第三次月考数学试卷(解析版) 题型:解答题

已知等比数列{an}的前n项和Sn=2n-a,n∈N*.设公差不为零的等差数列{bn}满足:b1=a1+2,且b2+5,b4+5,b8+5成等比.
(Ⅰ) 求a及bn
(Ⅱ) 设数列{an}的前n项和为Tn.求使Tn>bn的最小正整数n的值.

查看答案和解析>>

科目:高中数学 来源:2013年浙江省考试院高考数学测试卷(文科)(解析版) 题型:解答题

已知等比数列{an}的前n项和Sn=2n-a,n∈N*.设公差不为零的等差数列{bn}满足:b1=a1+2,且b2+5,b4+5,b8+5成等比.
(Ⅰ) 求a及bn
(Ⅱ) 设数列{an}的前n项和为Tn.求使Tn>bn的最小正整数n的值.

查看答案和解析>>

同步练习册答案