精英家教网 > 高中数学 > 题目详情
已知等比数列{an}的前n项和Sn=2n-a,n∈N*.设公差不为零的等差数列{bn}满足:b1=a1+2,且b2+5,b4+5,b8+5成等比.
(Ⅰ) 求a及bn
(Ⅱ) 设数列{an}的前n项和为Tn.求使Tn>bn的最小正整数n的值.
【答案】分析:(Ⅰ)由等比数列{an}的前n项和Sn=2n-a,n∈N*,先分别求出a1,a2,a3,由,能求出a;由公差不为零的等差数列{bn}满足:b1=a1+2,且b2+5,b4+5,b8+5成等比数列,列方程组先求出首项和公差,由此能求出bn
(Ⅱ)由,知an==2(n-1),故数列{an}的前n项和Tn=n(n-1).由此能求出使Tn>bn的最小正整数n的值.
解答:解:(Ⅰ)∵等比数列{an}的前n项和Sn=2n-a,n∈N*
∴a1=S1=2-a,
a2=(22-a)-(2-a)=2,
a3=(23-a)-(22-a)=4,

∴22=(2-a)•4,解得a=1,

∵公差不为零的等差数列{bn}满足:b1=a1+2,且b2+5,b4+5,b8+5成等比数列,

∴(8+3d)2=(8+d)(8+7d),
解得d=0(舍),或d=8,
∴bn=8n-5,n∈N*
(Ⅱ)∵,∴an==2(n-1),
∴数列{an}的前n项和
Tn=2(1-1)+2(2-1)=2(3-1)+2(4-1)+…+2(n-1)
=2[0+1+2+3+…+(n-1)]
=2×
=n(n-1).
∵bn=8n-5,Tn>bn
∴n(n-1)>8n-5,
∵n∈N*,∴n≥9,
∴使Tn>bn的最小正整数n的值是9.
点评:本题主要考查等差、等比数列的概念,通项公式及求和公式等基础知识,同时考查运算求解能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

5、已知等比数列{an}的前n项和为Sn,公比q≠1,若S5=3a4+1,S4=2a3+1,则q等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a2=9,a5=243.
(1)求{an}的通项公式;
(2)令bn=log3an,求数列{
1bnbn+1
}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}满足a1•a7=3a3a4,则数列{an}的公比q=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中a1=64,公比q≠1,且a2,a3,a4分别为某等差数列的第5项,第3项,第2项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2an,求数列{|bn|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a3+a6=36,a4+a7=18.若an=
12
,则n=
9
9

查看答案和解析>>

同步练习册答案