精英家教网 > 高中数学 > 题目详情
2.在某项体育比赛中,七位裁判为一选手打出的分数如下:93,89,92,95,93,94,93,去掉一个最高分和一个最低分后,所剩数据的平均值和方差为(  )
A.92,2B.92,2.8C.93,2D.93,0.4

分析 根据所给的条件,看出七个数据,根据分数处理方法,去掉一个最高分95和一个最低分89后,把剩下的五个数字求出平均数和方差.

解答 解:由题意知,去掉一个最高分95和一个最低分89后,
所剩数据93,92,93,94,93的平均数为 $\frac{93+92+93+94+93}{5}$=93;
方差为$\frac{1}{5}$[(93-93)2+(92-93)2+(93-93)2+(94-93)2+(93-93)2]=0.4,
故选:D.

点评 本题考查用样本的平均数、方差,属基础题,熟记样本的平均数、方差公式是解答好本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.给出下列四个命题:
①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是必然事件
②“当x为某一实数时可使x2<0”是不可能事件
③“明天安顺要下雨”是必然事件
④“从100个灯泡中取出5个,5个都是次品”是随机事件.
其中正确命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设a、b为两条不同的直线,α、β为两个不同的平面.下列命题中,正确的是(  )
A.若a⊥α,b∥β,a⊥b,则α⊥βB.若a⊥α,b∥β,a∥b,则α⊥β
C.若a⊥α,a⊥β,则α⊥βD.若a∥β,b∥β,a∥b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知a,b,c分别为△ABC三个内角A,B,C的对边,a=4,A=60°,B=45°,则边b的值为(  )
A.2$\sqrt{6}$B.2+2$\sqrt{2}$C.$\frac{4\sqrt{6}}{3}$D.2$\sqrt{3}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图,直角三角形ABC中,∠C=90°,其内切圆与斜边AB相切于点D,若AD=3,BD=4,则△ABC的面积为12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.定义:$\frac{n}{{p}_{1}+{p}_{2}+…+{p}_{n}}$为n个正数p1,p2,p3…pn的“均倒数”.若已知正数数列{an}的前n项的“均倒数”为$\frac{1}{2n+1}$,又bn=$\frac{{a}_{n}-1}{2}$,则$\frac{1}{{b}_{1}{b}_{2}}$+$\frac{1}{{b}_{2}{b}_{3}}$+$\frac{1}{{b}_{3}{b}_{4}}$+…+$\frac{1}{{b}_{2014}{b}_{2015}}$=$\frac{2014}{4029}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.命题p:若xy≠6,则x≠2或y≠3;命题q:若方程x2-x+a=0有两个正根,则0<a≤$\frac{1}{4}$,那么  (  )
A.“p∨(¬q)”为假命题B.“(¬p)∨q”为假命题C.“p∧q”为真命题D.“¬(p∨q)”真命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.过点(2,0)且与直线x-2y-1=0垂直的直线方程是(  )
A.x-2y-2=0B.x-2y+2=0C.2x+y-4=0D.x+2y-2=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知p:x2-2x-3>0,q:|x-1|<a,若¬p是q的充分不必要条件,则实数a的取值范围是(  )
A.[2,+∞)B.(2,+∞)C.[1,+∞)D.(1,++∞)

查看答案和解析>>

同步练习册答案