精英家教网 > 高中数学 > 题目详情

【题目】如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为( )

A.
B.
C.
D.

【答案】A
【解析】解:设正方体上底面所在平面截球得小圆M,
则圆心M为正方体上底面正方形的中心.如图.
设球的半径为R,根据题意得球心到上底面的距离等于(R﹣2)cm,
而圆M的半径为4,由球的截面圆性质,得R2=(R﹣2)2+42
解出R=5,
∴根据球的体积公式,该球的体积V= = =
故选A.

设正方体上底面所在平面截球得小圆M,可得圆心M为正方体上底面正方形的中心.设球的半径为R,根据题意得球心到上底面的距离等于(R﹣2)cm,而圆M的半径为4,由球的截面圆性质建立关于R的方程并解出R=5,用球的体积公式即可算出该球的体积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为平行四边形, ,且底面.

(1)证明:平面平面

(2)若的中点,且,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2015年推出一种新型家用轿车,购买时费用为16.9万元,每年应交付保险费、养路费及汽油费共1.2万元,汽车的维修费为:第一年无维修费用,第二年为0.2万元,从第三年起,每年的维修费均比上一年增加0.2万元.

(I)设该辆轿车使用n年的总费用(包括购买费用、保险费、养路费、汽油费及维修费)为f(n),求f(n)的表达式;

(II)这种汽车使用多少报废最合算(即该车使用多少年,年平均费用最少)?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆的方程为点的坐标为.

(1)求过点且与圆相切的直线方程;

(2)过点任作一条直线与圆交于不同两点,且圆轴正半轴于点,求证:直线的斜率之和为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商店为了解气温对某产品销售量的影响,随机记录了该商店月份中天的日销售量(单位:千克)与该地当日最低气温(单位:℃)的数据,如表所示:

(1)求的回归方程

(2)判断之间是正相关还是负相关;若该地月份某天的最低气温为,请用(1)中的回归方程预测该商店当日的销售量.

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三角形所在的平面与长方形所在的平面垂直,.点边的中点,点分别在线段上,且.

(1)证明:

(2)求二面角的正切值;

(3)求直线与直线PG所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若不等式的解集为,求实数的值;

(2)若不等式对一切实数恒成立,求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知⊙的半径为,圆心的坐标为,其中为该圆的两条切线,为坐标原点,为切点,在第一象限,在第四象限.

)若时,求切线的斜率.

)若时,求外接圆的标准方程.

)当点在轴上运动时,将表示成的函数,并求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足,若为单调递增的等差数列,其前项和为,则__________;若为单调递减的等比数列,其前项和为,则__________.

查看答案和解析>>

同步练习册答案