精英家教网 > 高中数学 > 题目详情
定义
n
x1+x2+…xn
为n个正数x1,x2,…,xn的“平均倒数”.若正项数列{an}的前n项的“平均倒数”为
1
2n+1
,则数列{an}的通项公式为an=(  )
分析:设数列{an}的前n项和为Sn,依题意,
n
Sn
=
1
2n+1
,从而可求得Sn,继而可求得an
解答:解:设数列{an}的前n项和为Sn,依题意,
n
Sn
=
1
2n+1

∴Sn=n(2n+1)=2n2+n,
∴当n≥2时,an=Sn-Sn-1=(2n2+n)-[2(n-1)2+(n-1)]=4n-1.
当n=1时,a1=S1=2+1=3,也符合上式;
∴an=4n-1.
故选C.
点评:本题考查数列的求和,理解题意,求得Sn是关键,考查推理分析与运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义:称
n
x1+x2+…xn
为n个正数x1,x2,…xn的“平均倒数”.若正项数列{Cn}的前n项的“平均倒数”为
1
2n+1
,则数列{Cn}的通项公式为cn=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•嘉定区一模)定义x1,x2,…,xn的“倒平均数”为
n
x1+x2+…+xn
(n∈N*).
(1)若数列{an}前n项的“倒平均数”为
1
2n+4
,求{an}的通项公式;
(2)设数列{bn}满足:当n为奇数时,bn=1,当n为偶数时,bn=2.若Tn为{bn}前n项的倒平均数,求
lim
n→∞
Tn

(3)设函数f(x)=-x2+4x,对(1)中的数列{an},是否存在实数λ,使得当x≤λ时,f(x)≤
an
n+1
对任意n∈N*恒成立?若存在,求出最大的实数λ;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•嘉定区一模)定义x1,x2,…,xn的“倒平均数”为
n
x1+x2+…+xn
(n∈N*).已知数列{an}前n项的“倒平均数”为
1
2n+ 4
,记cn=
an
n+1
(n∈N*).
(1)比较cn与cn+1的大小;
(2)设函数f(x)=-x2+4x,对(1)中的数列{cn},是否存在实数λ,使得当x≤λ时,f(x)≤cn对任意n∈N*恒成立?若存在,求出最大的实数λ;若不存在,说明理由.
(3)设数列{bn}满足b1=1,b2=b(b∈R且b≠0),bn=|bn-1-bn-2|(n∈N*且n≥3),且{bn}是周期为3的周期数列,设Tn为{bn}前n项的“倒平均数”,求
lim
n→∞
Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义
n
x1+x2+…xn
为n个正数x1,x2,…,xn的“平均倒数”.若正项数列{an}的前n项的“平均倒数”为
1
2n+1
,则数列{an}的通项公式为an=(  )
A.2n+1B.2n-1C.4n-1D.4n+1

查看答案和解析>>

同步练习册答案