精英家教网 > 高中数学 > 题目详情
已知椭圆方程为
x2
a2
+
y2
b2
=1
(a>b>0),长轴两端点A、B,短轴上端顶点为M,点O为坐标原点,F为椭圆的右焦点,且
AF
FB
=1,|OF|=1.
(1)求椭圆方程;
(2)直线l交椭圆于P、Q两点,问:是否存在直线l,使点F恰为△PQM的垂心?若存在,求出直线l的方程,若不存在,请说明理由.
分析:(1)根据题意可知c,进而根据
AF
FB
=1求得a,进而利用a和c求得b,故可得椭圆的方程;
(2)假设存在直线l交椭圆于P,Q两点,且F恰为△PQM的垂心,设出P,Q的坐标,利用点M,F的坐标求得直线PQ的斜率,设出直线l的方程,与椭圆方程联立,由韦达定理表示出x1+x2和x1x2,进而利用
MP
FQ
=0求得m,即可得到直线的方程..
解答:解:(1)由题意知c=1,
AF
FB
=1,
∴(a+c)•(a-c)=1=a2-c2,∴a2=2
故椭圆方程为
x2
2
+y2=1

(2)假设存在直线l交椭圆于P,Q两点,且F恰为△PQM的垂心,则
设P(x1,y1),Q(x2,y2),∵M(0,1),F(1,0),故kPQ=1,
于是设直线l为y=x+m,与椭圆方程联立,消元可得3x2+4mx+2m2-2=0
MP
FQ
=x1(x2-1)+y2(y1-1)=0又yi=xi+m(i=1,2)
得x1(x2-1)+(x2+m)(x1+m-1)=0
即2x1x2+(x1+x2)(m-1)+m2-m=0
由韦达定理得2•
2m2-2
3
-
4m
3
(m-1)+m2-m=0
解得m=-
4
3
或m=1(舍)
经检验m=-
4
3
符合条件,故直线l方程为y=x-
4
3
点评:本题考查椭圆的标准方程,考查了直线与圆锥曲线的关系,考查了学生综合运用基础知识解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知离心率为
6
3
的椭圆C:
x2
a 2
+
y2
b2
=1
(a>b>0)经过点P(
3
,1)

(1)求椭圆C的方程;
(2)过左焦点F1且不与x轴垂直的直线l交椭圆C于M、N两点,若
OM
ON
=
4
6
3tan∠MON
(O为坐标原点),求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方向向量为
V
=(1,
3
)
的直线l过椭圆C:
x2
a 2
+
y2
b2
=1(a>b>0)
的焦点以及点(0,-2
3
),直线l与椭圆C交于A、B两点,且A、B两点与另一焦点围成的三角形周长为4
6

(1)求椭圆C的方程;
(2)过左焦点F1且不与x轴垂直的直线m交椭圆于M、N两点,
OM
ON
=
4
6
3tan∠MON
≠0
(O坐标原点),求直线m的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a
+
y2
b
=1(a>b>0)
过点(1,
3
2
)
,且离心率为
1
2
,A、B是椭圆上纵坐标不为零的两点,若
AF
FB
(λ∈R)
,且|
AF
|≠|
FB
|
,其中F为椭圆的左焦点.
(I)求椭圆的方程;
(Ⅱ)求A、B两点的对称直线在y轴上的截距的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a
+
y2
b
=1(a>b>0)
过点(1,
3
2
)
,且离心率为
1
2
,A、B是椭圆上纵坐标不为零的两点,若
AF
FB
(λ∈R)
,且|
AF
|≠|
FB
|
,其中F为椭圆的左焦点.
(I)求椭圆的方程;
(Ⅱ)求A、B两点的对称直线在y轴上的截距的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知离心率为
6
3
的椭圆C:
x2
a 2
+
y2
b2
=1
(a>b>0)经过点P(
3
,1)

(1)求椭圆C的方程;
(2)过左焦点F1且不与x轴垂直的直线l交椭圆C于M、N两点,若
OM
ON
=
4
6
3tan∠MON
(O为坐标原点),求直线l的方程.

查看答案和解析>>

同步练习册答案