精英家教网 > 高中数学 > 题目详情
已知椭圆方程
x2
a2
+
y2
b2
=1(a>b>0),其中a=b2,离心率e=
2
2

(I)求椭圆方程;
(II)若椭圆上动点P(x,y)到定点A(m,0)(m>0)的距离|AP|的最小值为1,求实数m的值.
解(I)由题得
a=b2
c
a
=
2
2
a2=b2+c2

解得:a=2,b=
2

所求椭圆方程为
x2
4
+
y2
2
=1

(II)由方程
x2
4
+
y2
2
=1知-2≤x≤2,y2=2-
x2
2

|AP|=
(x-m)2+y2

|AP|2=(x-m)2+2-
x2
2
=
1
2
(x-2m)2-m2+2

f(x)=
1
2
(x-2m)2-m2+2,-2≤x≤2由题意得:f(x)min=1,又m>0

则①当0<2m≤2,即0<m≤1时,f(x)min=f(2m)=2-m2=1,解得m=1(m=-1舍去);
②当2m>2,即m>1时,f(x)min=f(2)=(2-m)2=1,解得m=3(m=1舍去);
综上,m=1或m=3.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆方程
x2
a2
+
y2
2a-1
=1(1<a≤5)
,过其右焦点做斜率不为0的直线l与椭圆交于A,B两点,设在A,B两点处的切线交于点M(x0,y0),则M点的横坐标x0的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆方程
x2
a2
+
y2
b2
=1(a>b>0),其中a=b2,离心率e=
2
2

(I)求椭圆方程;
(II)若椭圆上动点P(x,y)到定点A(m,0)(m>0)的距离|AP|的最小值为1,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•闵行区二模)已知椭圆方程为
x2
a2
+
y2
b2
=1(a>b>0)
,长轴两端点为A、B,短轴上端点为C.
(1)若椭圆焦点坐标为F1(2
2
,0)、F2(-2
2
,0)
,点M在椭圆上运动,当△ABM的最大面积为3时,求其椭圆方程;
(2)对于(1)中的椭圆方程,作以C为直角顶点的内接于椭圆的等腰直角三角形CDE,设直线CE的斜率为k(k<0),试求k满足的关系等式;
(3)过C任作
CP
垂直于
CQ
,点P、Q在椭圆上,试问在y轴上是否存在一点T使得直线TP的斜率与TQ的斜率之积为定值,如果存在,找出点T的坐标和定值,如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•江苏模拟)已知椭圆方程
x2
a2
+
y2
b2
=1
(a>b>0),当a2+
16
b(a-b)
的最小值时,椭圆的离心率e=
3
2
3
2

查看答案和解析>>

同步练习册答案