精英家教网 > 高中数学 > 题目详情
已知P,Q为抛物线f(x)=
x22
上两点,点P,Q的横坐标分别为4,-2,过P、Q分别作抛物线的切线,两切线交于点A,则点A的纵坐标为
 
分析:通过P,Q的横坐标求出纵坐标,通过二次函数的导数,推出切线方程,求出交点的坐标,即可得到点A的纵坐标.
解答:解:因为点P,Q的横坐标分别为4,-2,
代入抛物线方程得P,Q的纵坐标分别为8,2.
由x2=2y,则y=
1
2
x2,所以y′=x,
过点P,Q的抛物线的切线的斜率分别为4,-2,
所以过点P,Q的抛物线的切线方程分别为y=4x-8,y=-2x-2 
联立方程组解得x=1,y=-4 
故点A的纵坐标为-4.
故答案为:-4.
点评:本题主要考查利用导数求切线方程的方法,直线的方程、两条直线的交点的求法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列四个命题中,正确的命题序号是
(1)(4)
(1)(4)

(1)对于函数f(x)=(2x-x2)exf(-
2
)
是f(x)的极小值,f(
2
)
是f(x)的极大值;
(2)设回归直线方程为y=2-2.5x,当变量x增加一个单位时,y平均增加2个单位;
(3)已知平面向量
a
=(1,1),
b
=(1,-1),则向量
1
2
a
-
3
2
b
=(-2,-1);
(4)已知P,Q为抛物线x2=2y上两点,点P,Q的横坐标分别为4,-2,过P、Q分别作抛物线的切线,两切线交于A,则点A的纵坐标为-4.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px的焦点为F,P,Q为抛物线上两点,若△PQF为边长为2的正三角形,则p的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

下列四个命题中,正确的命题序号是________
(1)对于函数f(x)=(2x-x2)ex数学公式是f(x)的极小值,数学公式是f(x)的极大值;
(2)设回归直线方程为y=2-2.5x,当变量x增加一个单位时,y平均增加2个单位;
(3)已知平面向量数学公式=(1,1),数学公式=(1,-1),则向量数学公式=(-2,-1);
(4)已知P,Q为抛物线x2=2y上两点,点P,Q的横坐标分别为4,-2,过P、Q分别作抛物线的切线,两切线交于A,则点A的纵坐标为-4.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河南省驻马店市泌阳一中高二(上)12月月考数学试卷(理科)(解析版) 题型:填空题

下列四个命题中,正确的命题序号是   
(1)对于函数f(x)=(2x-x2)ex是f(x)的极小值,是f(x)的极大值;
(2)设回归直线方程为y=2-2.5x,当变量x增加一个单位时,y平均增加2个单位;
(3)已知平面向量=(1,1),=(1,-1),则向量=(-2,-1);
(4)已知P,Q为抛物线x2=2y上两点,点P,Q的横坐标分别为4,-2,过P、Q分别作抛物线的切线,两切线交于A,则点A的纵坐标为-4.

查看答案和解析>>

同步练习册答案