精英家教网 > 高中数学 > 题目详情

【题目】若函数 的图象向左平移 个单位,得到函数g(x)的图象,则下列关于g(x)叙述正确的是(
A.g(x)的最小正周期为2π
B.g(x)在 内单调递增
C.g(x)的图象关于 对称
D.g(x)的图象关于 对称

【答案】C
【解析】解:函数 . 化简可得:f(x)=sin2x﹣ sinxcosx= - cos2x﹣ sin2x
= ﹣sin(2x+ )图象向左平移 个单位,可得: ﹣sin(2x+ + )= -sin(2x+ )=g(x)
最小正周期T= ,∴A不对.
≤2x+ ,可得: ,g(x)在 内单调递增,∴B不对.
由2x+ = ,可得x= ,(k∈Z),当k=0时,可得g(x)的图象的对称轴为
∴C对.
由2x+ =kπ,可得x= ,对称中心的横坐标为( ,0),∴D不对.
故选C.
【考点精析】根据题目的已知条件,利用函数y=Asin(ωx+φ)的图象变换的相关知识可以得到问题的答案,需要掌握图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】正方形与梯形所在平面互相垂直,,点中点 .

(1)求证:平面

(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax3﹣bx2+cx+b﹣a(a>0).
(1)设c=0. ①若a=b,曲线y=f(x)在x=x0处的切线过点(1,0),求x0的值;
②若a>b,求f(x)在区间[0,1]上的最大值.
(2)设f(x)在x=x1 , x=x2两处取得极值,求证:f(x1)=x1 , f(x2)=x2不同时成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆轴,轴的正半轴分别交于A,B两点,原点O到直线AB的距离为该椭圆的离心率为

(1)求椭圆的方程

(2)是否存在过点P(的直线与椭圆交于M,N两个不同的点,使成立?若存在,求出的方程;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣(a+2)x+alnx,其中常数a>0.
(Ⅰ)当a>2时,求函数f(x)的单调递增区间;
(Ⅱ)设定义在D上的函数y=h(x)在点P(x0 , h(x0))处的切线方程为l:y=g(x),若 >0在D内恒成立,则称P为函数y=h(x)的“类对称点”.当a=4时,试问y=f(x)是否存在“类对称点”,若存在,请至少求出一个“类对称点”的横坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1日至3月15日中的某一天到达该市,并停留2天.

(Ⅰ)求此人到达当日空气质量优良的概率

(Ⅱ)求此人在该市停留期间只有1天空气重度污染的概率

(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx+bx﹣c,f(x)在点(1,f(1))处的切线方程为x+y+4=0.
(1)求f(x)的解析式;
(2)求f(x)的单调区间;
(3)若在区间 内,恒有f(x)≥2lnx+kx成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}.满足:an+1>an(n∈N*),a1=1,该数列的前三项分别加上1,1,3后成等比数列,an+2log2bn=﹣1.
(Ⅰ)分别求数列{an},{bn}的通项公式;
(Ⅱ)求数列{anbn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥P﹣ABCD的底面为菱形,∠BCD=120°,AB=PC=2,AP=BP=

(1)求证:AB⊥PC;
(2)求二面角B一PC﹣D的余弦值.

查看答案和解析>>

同步练习册答案