精英家教网 > 高中数学 > 题目详情
6.直线$\sqrt{3}x+y-a=0$的倾斜角为(  )
A.30°B.150°C.60°D.120°

分析 由直线的方程可得斜率等于-$\sqrt{3}$,设直线的倾斜角为θ,则tanθ=-$\sqrt{3}$,0≤θ<π,由此解得 θ的值.

解答 解:∵直线$\sqrt{3}x+y-a=0$的斜率等于-$\sqrt{3}$,设直线$\sqrt{3}x+y-a=0$的倾斜角为θ,
则tanθ=-$\sqrt{3}$,0≤θ<π,解得 θ=120°,
故选D.

点评 本题主要考查直线的倾斜角和斜率的关系,以及倾斜角的取值范围,已知三角函数值求角的大小,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.如图,在底面为正方形的四棱锥P-ABCD中,侧面PAD⊥底面ABCD,PA⊥AD,PA=AD,则异面直线PB与AC所成的角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.与双曲线2x2-y2=3有相同渐近线,且过点P(1,2)的双曲线的方程为(  )
A.2x2-$\frac{{y}^{2}}{4}$=1B.$\frac{{y}^{2}}{2}$-x2=1C.x2-$\frac{{y}^{2}}{2}$=1D.$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{4}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.调查某高中1000名学生的肥胖情况,得如表:
  偏瘦正常 肥胖 
 女生(人) 100163 
 男生(人) x 187 z
已知从这批学生中随机抽取1名学生,抽到偏瘦男生的概率为0.15
(Ⅰ)求x的值
(Ⅱ)若用分层抽样的方法,从这批学生中随机抽取100名,问应在肥胖学生中抽多少名?
(Ⅲ)已知y≥194,z≥193,求肥胖学生中男生不少于女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若实数x,y满足不等式组$\left\{\begin{array}{l}x+2y≤2\\ x≥0\\ y≥0\end{array}\right.$,则当y≤ax+a-1恒成立时,实数a的取值范围是a≥2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.“双节”期间,高速公路车辆较多,某调查公司在一服务区从七座以下的小型汽车中按进服务区的先后每间隔50辆就抽取一辆的样本方法抽取40名驾驶员进行询问调查,将他们在某段高速公路的车速(km/h)分成六段;[60,65),[65,70),[70,75),[75,80),[80,85),[85,90]后得到如图所示的频率分布直方图.
(1)求这40辆小型汽车车速的众数和中位数的估计值;
(2)若从车速在[60,70)内的车辆中任抽取2辆,求车速在[65,70)内的车辆恰有一辆的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某小组共10人,利用假期参加义工活动.已知参加义工活动的次数与相对应的人数的对应关系如表:
次数1234
人数1441
现从这10人中随机选出2人作为该组代表在活动总结会上发言.
(Ⅰ)设A为事件“选出的2人参加义工活动次数之和为6”,求事件A发生的概率;
(Ⅱ)设X为选出的2人参加义工活动次数之和,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x(x>0)}\\{{3}^{x}(x≤0)}\end{array}\right.$,且函数F(x)=f(x)+x-a有且仅有两个零点,则实数a的取值范围是a≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若集合A={2,3},B={x|x2-5x+6=0},则A∩B=(  )
A.{x=2,x=3}B.{(2,3)}C.{2,3}D.2,3

查看答案和解析>>

同步练习册答案