精英家教网 > 高中数学 > 题目详情
P是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)右支上一点,F1、F2分别是左、右焦点,且焦距为2c,则△PF1F2的内切圆圆心的横坐标为
 
分析:根据题意,利用切线长定理,再利用双曲线的定义,把|PF1|-|PF2|=2a,转化为|HF1|-|HF2|=2a,从而求得点H的横坐标.
解答:解:如图所示:F1(-c,0)、F2(c,0),设内切圆与x轴的切点是点H,PF1、PF2分 与内切圆的切点分别为M、N,
∵由双曲线的定义可得|PF1|-|PF2|=2a,由圆的切线长定理知,|PM|=|PN|,故|MF1|-|NF2 |=2a,
即|HF1|-|HF2|=2a,设内切圆的圆心横坐标为x,则点H的横坐标为x,
故 (x+c)-(c-x)=2a,∴x=a.
故答案为:a.
精英家教网
点评:本题考查双曲线的定义、切线长定理,体现了转化的数学思想以及数形结合的数学思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

P是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的右支上一点,F1,F2分别为双曲线的左、右焦点,焦距为2c,则△PF1F2的内切圆的圆心横坐标为(  )
A、-aB、aC、-cD、c

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的右支上一点,A1,A2分别为双曲线的左、右顶点,F1,F2分别为双曲线的左、右焦点,双曲线的离心率为e,有下列命题:
①双曲线的一条准线被它的两条渐近线所截得的线段长度为
2ab
a2+b2

②若|PF1|=e|PF2|,则e的最大值为
2

③△PF1F2的内切圆的圆心横坐标为a;
其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设点P是双曲线
x2
a2
-
y2
b2
=1(a>,b>0)
与圆x2+y2=a2+b2在第一象限的交点,F1、F2分别是双曲线的左、右焦点,且|PF1|=3|PF2|,则双曲线的离心率(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B,P是双曲线
x2
a2
-
y2
b2
=1
上不同的三点,且A,B连线经过坐标原点,若直线PA,PB的斜率乘积kPAkPB=
2
3
,则该双曲线的离心率为
15
3
15
3

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆与双曲线之间有许多类似的性质:
P是椭圆
x2
a2
+
y2
b2
=1(a>b>0)上任一点,焦点F1、F2,∠F1PF2=α,三角形PF1F2面积为b2
sinα
1+cosα
,类比,P是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)上任一点,焦点F1、F2,∠F1PF2=α,三角形PF1F2面积为
b2
sinα
1-cosα
b2
sinα
1-cosα

查看答案和解析>>

同步练习册答案