精英家教网 > 高中数学 > 题目详情
已知P是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的右支上一点,A1,A2分别为双曲线的左、右顶点,F1,F2分别为双曲线的左、右焦点,双曲线的离心率为e,有下列命题:
①双曲线的一条准线被它的两条渐近线所截得的线段长度为
2ab
a2+b2

②若|PF1|=e|PF2|,则e的最大值为
2

③△PF1F2的内切圆的圆心横坐标为a;
其中正确命题的序号是
 
分析:分别求得双曲线的渐近线和准线方程,进而求得准线被它的两条渐近线所截得的线段长度判断①正确.
根据双曲线的定义可知|PF1|-|PF2|=2a=(e-1)|PF2|≥(e-1)(c-a),进而求得e的范围,判断②不正确.
设△PF1F2的内切圆的圆心为O,内切圆切PF1于A点,PF2于B点,F1F2于C点,根据双曲线的定义可知|PF1|-|PF2|=2a.进而根据|PF1|=|PA|+|AF1|,|PF2|=|PB|+|BF2|,求得C的横坐标,判断③正确.
解答:解:双曲线的渐近线为y=±
b
a
x,准线方程为x=
a2
c
,代入渐近线方程得y=±
ab
c
=
ab
a2+b2

∴准线被它的两条渐近线所截得的线段长度为2×
ab
a2+b2
=
2ab
a2+b2
故①正确.
∵|PF1|-|PF2|=2a=(e-1)|PF2|≥(e-1)(c-a),整理得(e-1)•(e-1)≤2,解得,e≤1+
2
所以e的最大值是1+
2
②不正确.
设△PF1F2的内切圆的圆心为O,内切圆切PF1于A点,PF2于B点,F1F2于C点,
因为是内切圆,所以有OA⊥PF1,OB⊥PF2,OC⊥F1F2,且PA=PB,AF1=F1C,BF2=CF2.因为OC⊥F1F2,即x轴,只要求出C点的横坐标,就等于求出了O点的横坐标.
由双曲线的性质可知
∵|PF1|-|PF2|=2a
∵|PF1|=|PA|+|AF1|,|PF2|=|PB|+|BF2|,
∴|PF1|-|PF2|=(|PA|+|AF1|)-(|PB|+|BF2|)=|CF1|-|CF2|=2a,
又∵|CF1|+|CF2|=2c,联立可得CF2=c-a,∵F2(c,0),
∴C(a,0).
∴O点横坐标就为a,故③正确.
故答案为①③
点评:本题主要考查了双曲线的应用.解题的前提是对双曲线的基本知识能综合掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线
x2
a
-y2=1
的左顶点为A,若双曲线的一条渐近线与直线AM平行,则实数a的值是(  )
A、
1
25
B、
1
9
C、
1
5
D、
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,设p:函数y=ax在R上单调递减;命题q:方程
x2
a-2
+
y2
a-0.5
=1
表示的曲线是双曲线,如果“p或q”为真,“p且q”为假,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:曲线
x2
a-2
-
y2
6-a
=1为双曲线;命题q:函数f(x)=(4-a)x在R上是增函数;若命题“p或q”为真,“p且q”为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•宁波模拟)已知双曲线
x2
a
-
y2
a2+a+1
=1
的离心率的范围是数集M,设p:“k∈M”; q:“函数f(x)=
lg
x-1
x-2
  x<1
2x-k       x≥1
的值域为R”.则P是Q成立的(  )

查看答案和解析>>

科目:高中数学 来源:烟台一模 题型:单选题

已知抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线
x2
a
-y2=1
的左顶点为A,若双曲线的一条渐近线与直线AM平行,则实数a的值是(  )
A.
1
25
B.
1
9
C.
1
5
D.
1
3

查看答案和解析>>

同步练习册答案