精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= sinωx+cosωx(ω>0)的图象与x轴交点的横坐标构成一个公差为 的等差数列,把函数f(x)的图象沿x轴向左平移 个单位,得到函数g(x)的图象.若在区间[0,π]上随机取一个数x,则事件“g(x)≥ ”发生的概率为(
A.
B.
C.
D.

【答案】C
【解析】解:∵f(x)= sinωx+cosωx=2sin(ωx+ ),
由题意知 = ,则T=π,∴ω=2,
∴f(x)=2sin(2x+ ),
把函数f(x)的图象沿x轴向左平移 个单位,得g(x)=f(x+ )=2sin[2(x+ )+ ]=2sin(2x+ )=2cos2x.
∵2cos2x≥ ,x∈[0,π],可得:cos2x ,解得:2x∈[0, ] ,所以x∈[0, ]
∴事件“g(x)≥ ”发生的概率为 =
故选:C.
【考点精析】本题主要考查了几何概型和函数y=Asin(ωx+φ)的图象变换的相关知识点,需要掌握几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等;图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若不等式ax2+5x﹣2>0的解集是
(1)求实数a的值;
(2)求不等式ax2﹣5x+a2﹣1>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本小题满分10分)

(2017天津电视台播放甲乙两套连续剧每次播放连续剧时需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:

连续剧播放时长(分钟)

广告播放时长分钟

收视人次

70

5

60

60

5

25

已知电视台每周安排的甲乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用表示每周计划播出的甲乙两套连续剧的次数

(1)列出满足题目条件的数学关系式并画出相应的平面区域

2问电视台每周播出甲乙两套连续剧各多少次才能使收视人次最多

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,且椭圆上任意一点到左焦点的最大距离为,最小距离为.

(1)求椭圆的方程;

(2)过点的动直线交椭圆两点,试问:在坐标平面上是否存在一个定点,使得以线段为直径的圆恒过点?若存在,求出点的坐标:若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)求函数的单调区间;

(Ⅱ)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且 a=2csinA
(1)确定角C的大小;
(2)若c= ,且△ABC的面积为 ,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面,底面是直角梯形,上的一点.

(Ⅰ)求证:平面平面

(Ⅱ)如图(1),若,求证:平面

(Ⅲ)如图(2),若的中点,,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从“充分不必要条件”“必要不充分条件”“充要条件”“既不充分也不必要条件”中,选出适当的一种填空:

(1)记集合A{1p,2}B{2,3},则“p3”是“ABB”的__________________

(2)a1”是“函数f(x)|2xa|在区间上为增函数”的________________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知矩形和菱形所在平面互相垂直,如图,其中,点是线段的中点.

(Ⅰ)试问在线段上是否存在点,使得直线平面?若存在,请证明平面,并求出的值;若不存在,请说明理由;

(Ⅱ)求二面角的正弦值.

查看答案和解析>>

同步练习册答案