精英家教网 > 高中数学 > 题目详情
如图,四边形为矩形,平面,平面于点,且点上.

(1)求证:
(2)求四棱锥的体积;
(3)设点在线段上,且,试在线段上确定一点,使得平面.
(1)证明略;(2);(3)存在点N即为点F使得.

试题分析:(1)先由  ,又,由线面垂直的判定定理由,根据面面垂直的性质定理有,可证线线垂直;
(2) 由(1)可知该几何体是一个四棱锥,作,因为,所以 ,所以 ;
(3) 由已知有分别为的中点,只需要取的中点,由
则点就是点.

试题解析:(1)因为平面
所以
因为平面于点
 
因为,所以

因为,所以

(2)作,因为面平面,所以
因为,所以

(3)因为平面于点,所以的中点
的中点,连接
所以
因为,所以∥面,则点就是点
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知正方体的棱长为.

(1)求异面直线所成角的大小;
(2)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在边长为的正方形ABCD中,E、F分别为BC、CD的中点,M、N分别为AB、CF的中点,现沿AE、AF、EF折叠,使B、C、D三点重合于B,构成一个三棱锥(如图所示).

(Ⅰ)在三棱锥上标注出点,并判别MN与平面AEF的位置关系,并给出证明;
(Ⅱ)是线段上一点,且,问是否存在点使得,若存在,求出的值;若不存在,请说明理由;
(Ⅲ)求多面体E-AFNM的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

三棱锥P?ABC中,PA⊥平面ABC,AB⊥BC。

(1)证明:平面PAB⊥平面PBC;
(2)若,PB与底面ABC成60°角,分别是的中点,是线段上任意一动点(可与端点重合),求多面体的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

底面边长为,高为的正三棱锥的全面积为        

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知球,过其球面上三点作截面,若点到该截面的距离是球半径的一半,且,则球的表面积为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知一圆锥的母线长为4,若过该圆锥顶点的所有截面面积分布范围是,则该圆锥的侧面展开图的扇形圆心角等于_________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,三棱柱中,

(Ⅰ)证明:
(Ⅱ)若,求三棱柱的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,三棱柱,则              .

查看答案和解析>>

同步练习册答案