精英家教网 > 高中数学 > 题目详情
命题“?x∈R,有x2+1≥x”的否定是
?x∈R,使x2+1<x
?x∈R,使x2+1<x
分析:全称命题:“?x∈A,P(x)”的否定是特称命题:“?x∈A,非P(x)”,结合已知中原命题“?x∈R,都有有x2+1≥x”,易得到答案.
解答:解:∵原命题“?x∈R,有x2+1≥x”
∴命题“?x∈R,有x2+1≥x”的否定是:
?x∈R,使x2+1<x.
故答案为:?x∈R,使x2+1<x.
点评:本题考查的知识点是命题的否定,其中熟练掌握全称命题:“?x∈A,P(x)”的否定是特称命题:“?x∈A,非P(x)”,是解答此类问题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

15、给出下列四个结论:
①命题“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
②“若am2<bm2,则a<b”的逆命题为真;
③函数f(x)=x-sinx(x∈R)有3个零点;
④对于任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x>0时,f′(x)>0,g′(x)>0,则x<0时,f′(x)>g′(x).
其中正确结论的序号是
①④
(填上所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•马鞍山模拟)给出下列四个结论:
①命题''?x∈R,x2-x>0''的否定是''?x∈R,x2-x≤0''
②“若am2<bm2,则a<b”的逆命题为真;
③已知直线l1:ax+2y-1=0,l1:x+by+2=0,则l1⊥l2的充要条件是
ab
=-2

④对于任意实数x,有f(-x)=-f(x),g(-x)=g(x)且x>0时,f'(x)>0,g'(x)>0,则x<0时,f'(x)>g'(x).
其中正确结论的序号是
①④
①④
(填上所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省泰州市靖江市高三(上)期中数学试卷(解析版) 题型:填空题

给出下列四个结论:
①命题“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
②“若am2<bm2,则a<b”的逆命题为真;
③函数f(x)=x-sinx(x∈R)有3个零点;
④对于任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x>0时,f′(x)>0,g′(x)>0,则x<0时,f′(x)>g′(x).
其中正确结论的序号是    (填上所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省汕头市潮阳实验学校高三(上)第二周周练数学试卷(理科)(解析版) 题型:填空题

给出下列四个结论:
①命题“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
②“若am2<bm2,则a<b”的逆命题为真;
③函数f(x)=x-sinx(x∈R)有3个零点;
④对于任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x>0时,f′(x)>0,g′(x)>0,则x<0时,f′(x)>g′(x).
其中正确结论的序号是    (填上所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省杭州市富阳二中高三(下)3月月考数学试卷(理科)(解析版) 题型:填空题

给出下列四个结论:
①命题“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
②“若am2<bm2,则a<b”的逆命题为真;
③函数f(x)=x-sinx(x∈R)有3个零点;
④对于任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x>0时,f′(x)>0,g′(x)>0,则x<0时,f′(x)>g′(x).
其中正确结论的序号是    (填上所有正确结论的序号)

查看答案和解析>>

同步练习册答案