精英家教网 > 高中数学 > 题目详情
已知椭圆的左右焦点分别为F1(-2,0),F2(2,0).在椭圆M中有一内接三角形ABC,其顶点C的坐标,AB所在直线的斜率为
(Ⅰ)求椭圆M的方程;
(Ⅱ)当△ABC的面积最大时,求直线AB的方程.

【答案】分析:(Ⅰ)由椭圆的定义知.解出a的值,再由b2=a2-c2解出b的值即可得出椭圆的方程;
(II)由题意可直线AB的方程为,再由弦长公式用引入的参数m表示出弦长AB,再用m表示出点C到直线AB的距离,由三角形的面积公式将三角形的面积表示成m的函数,由基本不等式判断出面积最大时的m的值,即可求得直线AB的方程
解答:解:(Ⅰ)由椭圆的定义知
解得 a2=6,所以b2=a2-c2=2.
所以椭圆M的方程为.…(4分)
(Ⅱ)由题意设直线AB的方程为

因为直线AB与椭圆M交于不同的两点A,B,且点C不在直线AB上,
所以解得-2<m<2,且m≠0.
设A,B两点的坐标分别为(x1,y1),(x2,y2),

所以
到直线的距离
于是△ABC的面积
当且仅当,即时“=”成立.
所以时△ABC的面积最大,此时直线AB的方程为
即为.…(13分)
点评:本题考查直线与圆锥曲线的综合问题,考查了弦长的求法,三角形的面积公式,基本不等式求最值,椭圆的定义,椭圆的标准方程的求法,熟练掌握相关的知识与技巧是解题的关键,本题考查了数形结合的思想,转化的思想,对公式的记忆与灵活运用能力,是综合性较强的题目
练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年安徽省高三第一次月考理科数学试卷(解析版) 题型:解答题

已知椭圆的左右焦点分别是,直线与椭圆交于两点.当时,M恰为椭圆的上顶点,此时△的周长为6.

(Ⅰ)求椭圆的方程;

(Ⅱ)设椭圆的左顶点为A,直线与直线分别相交于点,问当

变化时,以线段为直径的圆被轴截得的弦长是否为定值?若是,求出这个定值,

若不是,说明理由.

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆数学公式的左右焦点分别是F1,F2,过右焦点F2且斜率为k的直线与椭圆交于A,B两点.
(1)若k=1,求|AB|的长度、△ABF1的周长;
(2)若数学公式,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的左右焦点分别是,直线与椭圆交于两点且当时,M是椭圆的上顶点,且△的周长为6.

(1)求椭圆的方程;

(2)设椭圆的左顶点为A,直线与直线:

分别相交于点,问当变化时,以线段为直径的圆

轴截得的弦长是否为定值?若是,求出这个定值,若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的左右焦点分别是,直线与椭圆交于两点且当时,M是椭圆的上顶点,且△的周长为6.

(1)求椭圆的方程;

(2)设椭圆的左顶点为A,直线与直线:

分别相交于点,问当变化时,以线段为直径的圆

轴截得的弦长是否为定值?若是,求出这个定值,若不是,

说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的左右焦点分别是,直线与椭圆交于两点且当时,M是椭圆的上顶点,且△的周长为6.

(1)求椭圆的方程;

(2)设椭圆的左顶点为A,直线与直线:

分别相交于点,问当变化时,以线段为直径的圆

轴截得的弦长是否为定值?若是,求出这个定值,若不是,说明理由.

查看答案和解析>>

同步练习册答案