【题目】观察分析下表中的数据:
多面体 | 面数(F) | 顶点数(V) | 棱数(E) |
三棱柱 | 5 | 6 | 9 |
五棱锥 | 6 | 6 | 10 |
立方体 | 6 | 8 | 12 |
猜想一般凸多面体中F,V,E所满足的等式是 .
【答案】F+V﹣E=2
【解析】解:凸多面体的面数为F、顶点数为V和棱数为E,
①正方体:F=6,V=8,E=12,得F+V﹣E=8+6﹣12=2;
②三棱柱:F=5,V=6,E=9,得F+V﹣E=5+6﹣9=2;
③三棱锥:F=4,V=4,E=6,得F+V﹣E=4+4﹣6=2.
根据以上几个例子,猜想:凸多面体的面数F、顶点数V和棱数E满足如下关系:F+V﹣E=2
再通过举四棱锥、六棱柱、…等等,发现上述公式都成立.
因此归纳出一般结论:F+V﹣E=2
所以答案是:F+V﹣E=2
【考点精析】本题主要考查了归纳推理的相关知识点,需要掌握根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推理,叫做归纳推理才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】已知全集U={0,1,2,3,4},A={1,2,3},B={2,4},则U(A∪B)=( )
A.{2}
B.{0}
C.{2,3,4}
D.{1,2,3,4}
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】不等式3≤|5﹣2x|<9的解集为( )
A.[﹣2,1)∪[4,7)
B.(﹣2,1]∪(4,7]
C.(﹣2,﹣1]∪[4,7)
D.(﹣2,1]∪[4,7)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知全集U=R,A={x|x≤0},B={x|x≥1},则集合U(A∪B)=( )
A.{x|x≥0}
B.{x|x≤1}
C.{x|0≤x≤1}
D.{x|0<x<1}
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com